

MUCK Manual Version
Written for TinyMuck version 2.2 fb5.64 & fb6.0
by Jessy @ FurryMUCK

INTRODUCTION
ABOUT THIS MANUAL

1.0 BASIC COMMANDS AND SETTING UP A CHARACTER
 1.1 Some Definitions and Abbreviations
 1.2 Connecting to the MUCK
 1.3 Getting a Character
 1.4 Basic Commands
 1.4.1 Looking
 1.4.2 Moving
 1.4.3 Talking
 1.4.4 Seeing Who's Around
 1.4.5 Carrying Things
 1.5 Setting Up Your Character
 1.5.1 Describing Yourself
 1.5.2 Setting Your Sex and Species
 1.5.3 Locking Yourself
 1.5.4 Getting a Home
 1.6 Getting Help

2.0 COMMANDS
 2.1 Overview: Dbrefs and Names
 2.1 Overview: Flags
 2.1 Overview: Properties
 2.1 Overview: Lists
 2.1.1 Protected, Restricted, and Wizard Properties
 2.1.2 Messages and Message Properties
 2.1.3 Data Types and Setting Properties
 2.1.4 Triggering from Properties
 2.1.5 Registered Names
 2.1.6 Pattern Matching
 2.1.6 Output Types
 2.1.7 Pronoun and Name Substitutions
 2.2 Overview: Rooms and the Environment Tree
 2.2 Overview: Things
 2.2.1 Droptos
 2.2.2 Looktraps
 2.3 Overview: Exits
 2.3 Overview: Locks
 2.3.1 Bogus Exits

 2.3.2 Unsecured Exits
 2.3.3 Exit Priorities
 2.4 User-Created Commands
 2.5 Flag Reference
 2.6 Server Command Reference
 2.7 User-Created Command Reference

3.0 PROGRAMMING
 3.1 Overview: MPI
 3.1.1 MPI Macros
 3.1.2 MPI Examples
 3.1.3 MPI Reference
 3.2 Overview: MUF
 3.2.1 Mucker Levels
 3.2.2 MUF Libraries
 3.2.3 MUF Macros
 3.2.4 MUF Compiler Directives
 3.2.5 MUF Reference
 3.2.6 MUF Library Reference

4.0 TUTORIALS
 4.1 Using the List Editor
 4.2 Making a Multi-Action
 4.3 Making Puppets
 4.4 Making Vehicles
 4.5 Building Rooms and Areas

 * Creating an Environment Room
 * Creating and Propping Exits
 * Describing Rooms
 * Writing Room Descriptions
 4.6 Archiving Your Belongings

5.0 ADMINISTERING A MUCK
 5.1 Technical Issues
 5.1.1 Selecting a Site
 5.1.2 Compiling the Server
 5.1.3 Setting Up the Database
 * Porting Global Programs
 * Other Porting Considerations
 * Setting System Parameters
 * Editing Server Files
 * Setting Up Guest Characters
 * Making a GoHome Action
 * Using the Realms Wizard System
 5.1.4 Security Concerns
 5.2 Non-technical Issues
 5.2.1 Conceptualizing the World

 5.2.2 Recruiting a Staff
 5.2.3 Sharing Responsibility
 5.2.4 Privacy Issues
 5.2.5 Acceptable Use
 5.2.6 Toading
 5.2.7 Record Keeping
 5.2.8 The Last Word

Appendix A: M* Clients
Appendix B: Sample Acceptable Use Policy and Programming Policy

Introduction
A MUCK is a computer-driven, text-based 'world'. Users, or 'players', log on to the MUCK computer via the
Internet, and may then interact with other players. The program running the MUCK and the computer it's on
are both called the 'server'. Each player controls a 'character', a virtual person or creature inhabiting the world
of the MUCK. Your character might be very much like you, the player, or she might be very different. MUCK is
one member of a group related servers, including MUSH, MUX, MOO, MUSE, and MUD; collectively, these
servers are often referred to as M*'s, MU*'s, or M***'s.

Everything is in text; there are no graphics. You will 'see' things from the perspective of your character:
whatever place you're in will be described, in words; people and things around you will also be described,
and you can look at them. Succinct commands let you say and do things, interacting with other people on the
MUCK (on a small MUCK, this might be six other people; on a large one, it might be 300). Some people view
the text-only aspect of MUCKs as a limitation, others as a very positive feature. While a screen full of text
lacks the instant impact of well done graphics, the world that comes alive in your imagination can be more
vivid and colorful than anything computer graphics can produce. Just as the words on the page 'disappear'
when one is immersed in a novel — and one instead imaginatively experiences the world described in the
book — the words on your computer screen can 'disappear', and you imaginatively experience the world of
the MUCK. Here, though, you are an active participant rather than a passive observer.

MUCKs can be constructed to model any sort of world imaginable, on any scale: a droplet populated by
microbes, a one-room bar, an undersea kingdom, or a far-flung stellar empire. By (recent) historical accident,
many MUCKs are worlds populated by furries. A furry is an anthropomorphic animal, an animal with human
characteristics. You might meet an accountant or a college student on a MUCK, but you're more likely to meet
a suave wolf who likes to quote poetry, or a tiger with a weakness for chocolate truffles. So, yes, furries are
inherently silly. But they are also inherently noble: protean and indestructible, they embody who we might be
in a world where anything is possible.

1.0 Basic Commands and Setting up a Character
1.1 Some Terms and Abbreviations
Frequently used terms:

Player:
The person reading this manual; the entity who types things on behalf of a character.

Character:
The virtual person or creature inhabiting the MUCK, controlled by a player. Players have characters;
characters have players. The terms 'player' and 'character' are often used interchangebly.

Puppet:
A player-like object controlled by a character. A 'virtual character', as it were. A puppet can move and
act independently of the character; everything the puppet sees and hears is relayed to the character and
player.

Zombie:
Same thing as a puppet.

Robot (or 'bot):
An object programmed to act like a character, or a character under the control of a program that causes
her to perform certain actions automatically. 'Bots are sometimes called AI's (from 'artificial
intelligence').

Flag:
A setting on an object that influences or restricts its behavior. Flags are also called 'bits'. Flags are
discussed in Section 2.1.

Object Type:
An object may be a PLAYER, THING, ROOM, EXIT, or PROGRAM.

A PLAYER is something that can be connected to via a name and password, can own things, and can
act independently. Because this object type is called 'player' rather than 'character', many help
documents (including this manual) will often use this term, though what's meant is the character object,
not the living person who controls it. A THING is a mobile object that may be picked up, dropped,
handed, and otherwise manipulated. A ROOM is a place in the world of the MUCK, though it need not
be described as an interior room: rooms can also be described to simulate an outdoor area, or described
in an abstract way so that moving through the room shows characters useful text (for example, a
tutorial on building might be set up as a series of rooms, with the description of each room serving as a
'page' in a maunal). An EXIT is a link between two objects on the MUCK. Exits may be created such
that they serve as virtual doors between rooms, or they may serve as user-created commands. (EXITs
are also called ACTIONS.) A PROGRAM is a special instance of class THING which contains the code
of an executable program. The type of an object is determined when it is created, and indicated by a
flag. An object with a P flag is a PLAYER; an object with an R flag is a ROOM; an object with an E flag
is an EXIT; an object with an F flag is a program. If an object has none of these flags, it is a THING .
The collective term for all of these is is 'object': players, rooms, etc. are all objects.

Dbref:
Every object in the database has a unique identifying number: its 'database reference number', or 'dbref'

for short. (Many objects may have the same name.) A dbref is usually preceeded by an # octothorpe,
e.g. #123.

Client:
A program that replaces Telnet as a means to connect to the MUCK server. Clients have numerous
special features specifically applicable to M*'s, such as automated logon, the capacity to switch
between several worlds, hiliting certain kinds of text, line-wrapping, separating text being typed from
text being displayed by the MUCK, paging, and scrollback. Different platforms require different clients.
TinyFugue is a popular UNIX client. MUDDweller is a widely used Macintosh client. SimpleMU,
Pueblo, Phoca, and ZMud are common Windows clients. A single client can connect to different
servers... that is, you don't need a separate client for MUSH, MUCK, and MUD. Virtually all client
programs are distributed as freeware or shareware, and are widely available over the Internet (see
Appendix A).

Penny:
The unit of currency on a MUCK. Money is usually a non-issue on MUCKs, though some commands
require an expenditure of pennies. The administrators of a MUCK may set the name of the currency: it
might be pennies, or it might be pop-tarts, fleas, or lurid fantasies. You will often find money simply by
moving through the MUCK, and will see a message such as 'You find a penny!' or 'You find a reason
for living!' Many MUCKs also have banks or other places where you can get more pennies.

Save:
A period in which the server backs up the database to disk. At scheduled intervals, the server
automatically executes relatively brief saves in which only those objects changed or created since the
last save are backed up ('delta saves'), as well as longer saves in which the entire database is backed up
('full saves' or 'database saves'). In addition to automated saves, wizards may initiate a save via the
@dump command. ('Saves' are also called 'dumps'.) During a save, activity on the MUCK is frozen:
commands you enter during a save will be queued and executed after the save completes. On a very
large MUCK, a full save can take ten or more minutes.

Lag:
(noun) A perceptible delay between the time you enter a command and the time it is executed. Lag may
be caused by an overloaded server (too many people logged on or too many programs running), by an
overly large database (the database is larger than available RAM, necessitating frequent swaps to disk),
or by problems on the Internet. (verb) To experience lag or a 'locked-up' screen.

Spam:
(noun) Text scrolling by too fast to be read comfortably. (verb) To act or use programs in such a way
that those around you are subjected to an excessive amount of frivolous or repetitive text.

Idle:
To be logged onto the MUCK but not doing anything.

Mav:
To say aloud something meant to be whispered. By extention, to say aloud something meant to be
paged, or to whisper or page to the wrong person. Maving is a potential source of embarrassment or
awkwardness. The name derives from a character in the early days of M*s who was chronically prone
to this particular faux pas.

God:
The MUCK's overall controller or administrator, and the player object with dbref #1. God has access

to a few commands unavailable to all other players, and may not be @forced. The term 'God' is used
less frequently on MUCKs than on MUSHes and MUDs. In fact, leadership by a single wizard player is
relatively rare. More often, a core group of wizards share responsibility for administering the MUCK,
with each having access to the God character's password.

Wizard:
An administrator of the MUCK, and a player with the W flag. Wizards have control over all objects in
the database, and may use restricted commands available only to them. ('Wizard' is often shortened to
'wiz'.)

Realm Wizard or Realms Wizard:
An administrator of a certain area within a MUCK. Realms wizards have partial command over objects
and players within their area, but cannot use wiz commands. Use of the realms wizard system is
somewhat uncommon.

Mortal:
A non-wizard character. This term too is used less frequently on MUCKs than on MUSHes and MUDs.
While wizards are technically players, people usually refer simply to 'wizzes' on the one hand and
'players' on the other. (Where the distinction is important, this manual will use the term 'mortal'.)

Staff:
A MUCK administrator, who may or may not be a wizard, and may or may not have access to restricted
commands. A common staff position is 'helpstaff': someone who agrees to help new players and answer
questions, but seldom has access to restricted commands. Most wizards are staff, but occassionally a
player will be given a wizbit without staff responsibilities and privileges. In other words, 'staff' is an
administrative rather than technical term.

MPI:
An online programming language with a LISP-like syntax. MPI is available to all players. Because it
is universally available, MPI includes a number of security features that restrict its power. MPI is
covered in Section 3.

MUF:
An online programming language with a FORTH-like syntax. MUF security is handled through a system
of privileges. In order to program in MUF, one must have a 'Mucker bit' (an M flag). Mucker bits range
from M1 (highly restricted) to M3 (almost as powerful as a Wizard flag). On well established MUCKS,
only highly trusted players with demonstrated programming skill are given M3 bits. The power and
efficiency of MUF make MUCK readily user-extensible. MUF is covered in Section 3.

User-Created Command or User-Created Program:
These terms are not commonly used on MUCKs, but are often used in this manual, and so are
mentioned here. Many of the commands people are accustomed to using on MUCKs are not part of the
MUCK server, but rather separate programs created by players and wizards. Soft-coded commands, in
other words. Some (such as the say, page, and whisper commands used on most MUCKs) are
enhancements of server commands. Others (such as ride, lsedit, and lookat) are basic utilities
that do something the server itself cannot. A large MUCK will also have a great many other user-created
commands and programs: some invaluable, some highly specialized, and some frivolous.

Control:
This term too is used quite frequently in the manual. In almost all cases, your permission to change an
object is determined by whether or not you control it. For mortals, control is essentially synonymous

with ownership: you control everything you own; you don't control things you don't own, with one
exception: anyone can control an unlinked exit. Wizards and realms wizards have extended control:
Realms wizards control anything in their realm, including players; wizards control everything.

Frequently used abbreviations:
VR:

Virtual Reality. The MUCK world or worlds. Characters live there.

RL:
Real Life. The world outside the MUCK. Most players live there.

M* or M***:
A generic abbreviation for all flavors of text-based, Internet-accessible, interactive programs, including
MUD, MUSH, MUX, MOO, MUSE, and MUCK.

IC:
In Character. Acting or speaking as your character, rather than as you, the player.

OOC:
Out of Character. Acting or speaking as you, the player, rather than the character. Medieval warriors
arguing about Mac vs. Windows are OOC. In some situations, on some MUCKs, being OOC without
signalling that you are doing so (by putting something like '(OOC)' or 'notes OOC' before your
poses and comments) is considered a breach of etiquette.

IMHO:
In My Humble (or Holy) Opinion, & IMO, In My Opinion

LOL:
Laughs Out Loud

AFK:
Away From Keyboard

BRB:
Be Right Back

BBL:
Be Back Later

TS:
TinySex. To make love or have sex on the MUCK, via the gestures and comments of your character. TS
is both a verb and noun.

TP:
TinyPlot. A role-played, jointly-authored, predominantly improvised storyline acted out by a group of
players. TPs are usually consensual: players agree ahead of time to participate in the TP, though other
players may be drawn into the TP by the storyline's development. Usually players will plan the main
conflict, premise, or events ahead of time — at least provisionally — and improvise their characters'
individual contributions and reactions. (The terms 'TinySex' and 'TinyPlot' derive from 'TinyMUD', an

early server from which MUCK grew out of.)

RP:
Role Playing. Acting IC in a way that is consistent with either the overall theme of the MUCK, a
TinyPlot in which one is participating, or both. Some MUCKs are predominantly places to RP; some
are mostly places to socialize, where RP is sporadic.

Sidebar: MUCK itelf is not an abbreviation or acronym. The names of other M* servers are: MUD stands for
Multi-User Dungeon or Multi-User Domain; MUSH for Multi-User Shared Hallucination; MOO for MUD,
Object Oriented. MUCK is simply a name with a sound and connotations rather like those of MUD and MUSH.
Purportedly, the name derives from the fact that MUF gives players the ability to 'muck around with' the
database.

About this Manual
The MUCK Manual comprises five sections. Section 1 is an introduction for new players, covering basic
commands and setting up your character. Section 2 deals with server commands and the commands included
in the standard start-up database. Section 3 covers programming. Tutorials are presented in Section 4. Section
5 discusses technical and nontechnical issues of administering a MUCK. New players should read Section 1;
others may safely begin with later sections.

The Overview sections provide relatively thorough discussion of relevant concepts, but are not
comprehensive. The Reference sections are comprehensive (or at least attempt to be), but are written in a
terse style that assumes the reader has some familiarity with the topic or has read the Overview. The
remaining sections discuss aspects of the section topic meriting special attention.

Examples in the manual are in fixed-width font like this.

Text enclosed in [square brackets] is optional. Text enclosed in <angle brackets> should be edited as
appropriate for you and your character. For example, where the manual says 'type <your name>', type your
name, rather than typing this literally. Within examples, lines beginning with a > greater than sign indicate
material you should enter at your keyboard; the remaining lines are sample output from the MUCK. (In some
longer programming entries, the > sign has been omitted so that you may cut and paste text from the web
page to a MUCK.)

The MUCK Manual attempts to provide a single, relatively comprehensive reference for MUCK, as Lydia
Leong's MUSH Manual does for MUSH. The organization of The MUCK Manual is in part based on her
manual, and any indebtedness is gratefully acknowledged.

The MUCK Manual was written in collaberation with Winged of SPR and FurryMUCK, author of the online
documentation for MUCK, version 6.0. Authors and editors of reference materials quoted include Foxen
(foxen@belfry.com), Fre'ta (stevenl@netcom.netcom.com), Ioldanach (mortoj@rpi.edu).

This version of the manual was written for MUCK version 2.2 fb5.64. Version fb6.0 is given partial
coverage. Note: this is this is the 'Fuzzball' branch of the MUCK server family, which is itself a branch of the
TinyMUD branch of M* server families. In other words, while The MUCK Manual discusses MUCK as though
there were a single standard version, this is not really the case. You should type @version on your MUCK to

see what version you are on. If the version info includes the letters 'fb', you can be pretty sure that material
presented in The MUCK Manual relates to your sever. (If you have expertise in alternate flavors of MUCK and
would like to help me get up to speed so that I can expand the manual, then great, let's talk!)

The Manual may be freely copied, distributed, quoted, and archived.

1.2 Connecting to the MUCK
To play on a MUCK, you need to be logged onto a character. The most basic way to do this is with Telnet. A
client program (see Appendix A) is vastly preferable to Telnet, but not essential. For now, examples will
assume you are using Telnet from a UNIX account. If you don't have a character on the MUCK, you will
need to log on as a Guest. You will also need to find the addresses and port numbers of some open MUCKs.
Lists of such address are frequently posted on the newsgroup rec.games.mud.announce, and are easily found
via web searches for keywords such as 'muck' or 'mud'. The example below use the current address for
FurryMUCK (as of Summer, 1999).

Logging on involves two steps: connecting to the MUCK, and logging onto a specific character.

To connect to the MUCK via Telnet on a UNIX account, type telnet, followed by a numeric or domain
name IP address, followed by a port number. Press enter.

> telnet furry.org 8888

If the connection is successful (i.e., if you typed everything correctly, the Net is not having a Bad Day, and
the MUCK itself is running) a login screen will scroll onto your terminal. If you experience a delay, and then a
messages such as 'connection incomplete: timed out', wait a few minutes and try again: it's possible that the
MUCK was undergoing a save while you were trying to connect, or that there were transient connection
problems on the Internet.

The login screen should show informational text, illustrations composed of ASCII characters, or a
combination of these. It is possible to successfully connect to the MUCK, yet see a rather garbled looking
login screen. Usually this is due to improper terminal settings. If this happens, continue with the login step.
The problem may disappear once you've logged on, and if doesn't, people online may be able to help with
terminal settings. (This problem is relatively rare.)

Once you've connected to the MUCK, you need to log onto a specific character. If you don't have a character
on the MUCK, you can (usually) connect to a Guest character.

> connect guest guest

If you have a character, type connect followed by the character name and password.

> connect cashmere flipFlap

On large MUCKs (including our example, FurryMUCK) it is common to require Guests to page a wizard and
ask to be let out of the Guest Room. This is a security measure: it is not unheard of for players who have
been banned from the MUCK for causing problems to attempt to log on as a Guest and continue their improper
behavior; a wizard can check the site from which a Guest is connecting, and refuse to free someone from a
site known to be the home of problem-causers. If this step is required (the text you see after logging on as a
Guest will say so), type wizzes to get a list of any wizards online, and page one asking him to let you out

(paging is discussed below, in Section 1.4.3). If no wizards are online, you'll have to try again later. On most
MUCKs, this step is unnecessary. You can get out of the Guest Room simply by typing out.

1.3 Getting a Character
The MUCK server has a provision for automatic character generation, but usually this is disabled. Instead,
you'll need to send email requesting a character. The contents of the email you send will vary from MUCK to
MUCK: some simply ask for the character name you want, others require your real name, your age, and your
state or country of residence. Help files on the MUCK or people online should give you more specific
information. Typing news registration or news join for a helpfile or staff for a list of people
responsible for answering such questions are good first steps for finding this information.

Once your character is approved and created, you will be sent email containing the character's name (usually
the name you asked for) and your password. Sometimes you request a password; sometimes it is randomly
assigned. Random passwords may be changed to something memorable once you connect. Passwords are
case-sensitive: 'flipFlap' and 'flipflap' are two different passwords.

Character creation by this method usually takes a day or two.

On MUCKs that allow automatic character creation, use the create command at the log on screen:

> create Cashmere flipFlap

1.4 Basic Commands

1.4.1 Looking
The look command (abbreviated 'l') shows you your surroundings. Typing look by itself shows you the
room you are in. You automatically see the description of a room upon entering it; typing look shows the
same description again (it may have scrolled off your screen). Typing

 look <object>

or

 l <object>

...shows you the description of <object>. The lookat command does a possessive look, showing
something that is held by someone else. The syntax is lookat <object>'s <thing>.

 lookat jessy's ring

1.4.2 Moving
The go or goto command causes your character to move in a certain direction or use a specific exit. For
example, typing goto north would cause your character to move one room to the north (assuming there is
a room to the north — or, more accurately, there is an exit named 'north' in your current location, leading to

another room). The goto command is not really necessary, and is almost never used: typing the exit name
by itself will also cause you to 'go' in that direction, and directions are usually abbreviated to their first letter.
Thus, typing north or n should produce the same result as goto north. If you can't go in a particular
direction (because there is no exit in that direction, or the exit is locked against you), you will see a fail
message such as 'You can't go that way.'. A commonly used exit name is 'out' or 'o': typing either of these in
an interior room will often move you outside the room or building.

Frequently, the builder of a room makes use of a program that appends the names of 'Obvious Exits' to the
description of a room (An 'obvious' exit is one that is not hidden by being set Dark). The names of these
exits will then appear in a list below the room's description. The absence of such a list does not mean that
there is no way out of the room. Read the room's description carefully to see if it indicates directions you can
go. If you are still unable to determine valid directions, try common-sense directions such as 'west', 'n', or
'out'. If all else fails, you can get out of room by typing 'home' or 'gohome', which will return you to your
home location.

1.4.3 Talking
The say command (abbreveated as a " quotation mark) causes your character to say something hearable by
all other characters in the same room. Thus, if Cara's player types...

 say Hi there!

or

 "Hi there!

people in the same room will see

 Cara says, "Hi there!"

Characters can communicate via gestures or 'poses' as well as speech. The pose command (abbreated as a :
colon) causes your character to do something seeable by all other characters in the same room. So, if Cara's
player types...

 pose waves.

or

 :waves.

people in the same room will see

 Cara waves.

The pose command handles punctuation intelligently, omitting the space between the character's name and
the pose when the text begins with punctuation. Thus, if Cara's player typed...

 :'s going to go see a friend

characters around her would see...

 Cara's going to go see a friend.

rather than

 Cara 's going to go see a friend.

You can communicate with a specific player, or a group of players, rather than the whole room, via the
whisper command (abbreviated as 'w' or 'wh'). The syntax is w <name or names> = <message>
For example, if Clearsong's player typed

 w cashmere = What say we blow this joint?

...Cashmere would see...

 Clearsong whispers, "What say we blow this joint?" (to
 you)

If Clearsong's player had typed w cashmere cara = I thought that was illegal., both
Cashmere and Cara would receive the whisper. To format a whisper as a pose, put a colon before the
whispered message. For example, Cashmere could answer Clearsong by typing...

 w clearsong = :nods.

Whisper will search the room for partial name matches. Thus, if there is no one else named
Clear<something> present, typing w clear = :nods would send the whisper to Clearsong. The whisper
command 'remembers' the last person you whispered to, so to continue a whispered conversation, the name
may be omitted: w = <message>.

You can communicate with people in other rooms via the page command (abbreviated as 'p'). The syntax
for pages, page poses, and pages to multiple players is the same as that of whisper: p <name or names>
= <message> (for a page) and p <name or names> = : <pose> (for a page pose). Like whisper,
the page 'remembers' the last person you paged to and the name may be omitted.

(Note: Spaces have been placed around the = equal sign in the above examples for clarity. The spaces are not
necessary, but can be included.)

1.4.4 Seeing Who's Around
Space on the MUCK is divided into 'rooms', which may or not be described to resemble actual interior rooms.
There may be numereous people online, but not in the same room as you.

The names of characters in the same room as you will be appended to the room's description in a list of the
room's 'Contents'. Some things in the list may not be connected characters, however: some may be things.
some may be puppets, and some may be characters who are not online (they're 'asleep'). To get a list of online
characters in the same room, type who in lower case. In rooms set Dark, the 'Contents' list will not appear:
there may or may not be other players present. Guest Rooms and New Player Start rooms are often set
Dark.

To see who's online on the MUCK as a whole, type WHO, all upper case, or 3who for a shorter, three-column
list.

1.4.5 Carrying Things
The commands for handling things are quite straightforward: get <object> causes you to pick up

something; drop <object> causes you to drop it. When you go somewhere, objects you are carrying will
go with you.

In order to get something, you must be in the same room, and it must not be locked against you.

You can hand things to other players, syntax hand <object> to <player>. Being able to hand or be
handed to isn't automatic: type hand #ok to enable handing.

The inventory command, abbreviated i or inv, shows a list of everything you are carrying, and a line
showing how many pennies you have.

1.5 Setting Up Your Character
A new character is essentially a blank slate, having only a name, a dbref, a password, a flag or two, and some
pennies. In order to become a fully functioning part of the MUCK world, you will need to do a few things to
get your character set up. The following section describes a very basic set up. Most of the things you'll do in
this section involve setting 'properties'. A property is a named location on a MUCK object where information
is stored. Properties are discussed fully in Section 2; you don't need to understand exactly how MUCK handles
properties in order to set up your character. Any commands you issue at this stage are reversible, so don't
worry about making mistakes. Simply re-enter the command correctly.

1.5.1 Describing Yourself
Until you describe yourself, people who look at you will see 'You see nothing special'. You can (and should)
set what people see when looking you by entering a description, or 'desc' as it's usually called. The syntax is
@desc me = <description>.

A 'straight desc' such as this is rather limited: the text remains the same at all times, you won't know when
someone looks at you, you'll be limited to about twelve lines of text, and you can't divide the text into
paragraphs.

Later, you can use MPI and the list editor (a program that lets you work with a 'list', a series of props which
together act like a document) to create highly flexible descs that change in response to the time of day, who's
looking at you, what you're wearing or what mood you're in, and so forth.

Many MUCKs have a user-created command that allows you to 'morph', or change descriptions with a
succinct command. You may wish to type morph #help to see if such a program is available on your
MUCK.

Most MUCKs also have an MPI macro that notifies you whenever someone looks at you, called 'look-notify'.
To use it, put {look-notify} — curly braces included — anywhere in your description. For example:

 @desc me = A nymph with green hair.{look-notify}

1.5.2 Setting your Sex and Species
Your sex does not have to be male or female, but it's recommended. From time to time you'll encounter

programs or commands that format their output based on the user's sex (pronoun substitution is the most
common instance). No harm will be done if your sex is something other than male or female, but the program
output may look a bit strange.

To set your sex, type ...

 @set me = sex : <value>

Your species can be anything appropriate to the MUCK. On MUCKs where everyone is human, the species
prop is often used to indicate a profession or social position.

To set your species, type ...

 @set me = species : <value>

Many MUCKs have a user-created command that shows the sex and species of everyone in the room. The
most common is WhoSpecies or ws. Type ws to see if it's available on your MUCK.

1.5.3 Locking Yourself
On some M* servers, locking yourself is a very worthwhile precaution, preventing other players from taking
things from you or picking you up. On MUCKs, locking yourself really isn't crucial. The server won't let you
pick up players, and it won't let you take things being held by other players. If you are not locked, people can
'rob' you, which means that they take one of your pennies. Most players have several thousand more pennies
than they need.

Nonetheless, you can lock yourself by typing @lock me = me. (Locks are discussed in Section 2.)

A more practical issue is that of 'handing' and 'throwing'. You may or may not wish to allow people to hand
and throw things to you. Both are convenient, but it is possible to abuse the hand and throw commands.
Abuses range from throwing objects to someone who does not wish to be disturbed (a minor annoyance) to
handing someone an innocuous looking object that can eavesdrop on their conversations (an offense that
merits being banned from the MUCK). Most players do allow handing and throwing.

To allow handing, type hand #ok. To allow throwing, type throw #ok and @set me = J. To disallow
them, type hand #!ok and/or throw #!ok. Both are disallowed by default. (hand and throw are user-
created commands, but most MUCKs have them.)

1.5.4 Getting a Home
(Note: It is not necessary to get a home immediately, and sometimes the simplest approach is the best one:
page a staff member and ask her to set you up with a home or tell you how to do so.)

'Home' has both a technical and non-technical meaning on MUCKs. In the technical sense, all players and
things have a 'home', a place to which they are 'linked', and to which they will return if the MUCK doesn't
know where to put them or if they are sent home by a command or program. A player's home must be a
room. A thing's home may be a room or player.

In the non-technical sense, your 'home' is, naturally enough, where you live. Your 'non-technical home' (the
place where you hang out, keep your belongings, sleep, etc.) does not necessarily have to be your 'technical

home', but it is more convenient for both to be the same.

Getting a home on the MUCK involves both technical and non-technical issues. Read this section completely
before typing any of the commands.

On the non-technical side, you will need to find a place where you can put a home. There may be places
where the builder has installed a command that lets you put in a home: read 'news' and any materials in the
place where you start off, or ask people online for information about such places.

If you don't find such a place, or if you find a public place where you would like a home but such a command
is not available, you will need to contact the owner of the room and work with her to set up a home. Type ex
here to find out the name of the room's owner, then contact her by page or page #mail. On most
MUCKs, wizards or staff members work with new players to help set up a home. It's worthwhile asking
people online how this matter is usually handled on your MUCK.

On the technical side, getting home involves three steps:

1. Creating a home.
2. Linking yourself to the home.
3. Linking the home to the rest of the MUCK.

If you are using a program that automates the process, creating a home is simply a matter of following
instructions provided on a sign or directory. Usually you just type something like claim <# or
direction>.

To create your own home, make a room with the @dig command, syntax @dig <room name>. (You
must have a 'builder bit' — the B flag — in order to use @dig. On most MUCKs, all players have a builder
bit.)

> @dig Cashmere's Den
 Cashmere's Den created with Room #1234.
 Parent set to Outdoor Environment Room(#101RJA).

Note the dbref of the newly created room (#1234 in this example). You will need it in order to go there or
link the room to the rest of the MUCK. If you forget the room's dbref, you can determine it with the @find
command.

> @find cashmere's den
 Cashmere's Den(#1234RJ)
 End of list
 (1 object found)

(If you see the room's name, but not its dbref, you are set Silent. Type @set me=!S to clear the
Silent flag set on your character.)

A newly created room is said to be 'floating': it exists, but is not linked to anything else on the MUCK. In
other words, there are no 'doors' in and out of the room. If your MUCK has convenient 'global exits'
(commands that take you to a centralized location from anywhere on the MUCK) it may be feasible to leave
the room floating indefinitely.

If your MUCK has a convenient global exit, and you would like to set up a home without having to wait for
help from someone else, @dig a room as described above, then use the @link command (syntax @link

<object> = <home>) to set your home and the home command to go there.

> @link me = #1234
 Home set.
> home
 You wake up at home, without your possessions...
 Cashmere's Den(#1234RJ)

As the example suggests, you can loose things when using the home command: when you type 'home', both
you and anything you are carrying go home. If you are carrying things that do not belong to you, or that are
linked to somewhere else on the MUCK, they will return to their homes when you use the home command
(in other words, the home command is recursive). There are two ways to avoid this problem. Teleporting
may or may not be allowed on your MUCK (usually players can teleport to and from rooms they own). If you
are able to, teleport to the new room first, then link yourself there.

> @tel me = #1234
 You feel a wrenching sensation....
 Cashmere's Den(#1234RJ)
> @link me = here
 Home set.

The second alternative is to use gohome rather than home. The gohome command takes you to your home
without causing the things you're carrying to also go home. However, gohome is a user-created command:
though it's widely available, there is a possibility that your MUCK does not provide it.

> @link me = #1234
 Home set.
> gohome
 You head home, arriving safely.
 Cashmere's Den(#1234RJ)

If you plan to leave your room set floating for a while, and your MUCK has a gohome command, you can just
use it whenever you want to go home. If there is no gohome command, it will be worthwhile to create an
action that takes you there without causing you to loose things you are carrying. Use the @action command
(abbreviated @act, syntax @act <action name> = <origin or attachment point of
action>), and the @link command (syntax @link <action> = <destination>) to create the
action

> @act myplace = me
 Action created with number #1236 and attached.
> @link myplace = #1234
 Linked to Cashmere's Den(#1234).

1.6 Getting Help
There are a number of online resources for getting help with questions or problems.

The server command help (syntax help <topic>) provides online documentation of many (but not all)
server commands and features.

Many (but not all) user-created commands follow the convention of including a #help function (syntax
<command> #help). For example, you can get information on using the page program by typing page
#help. MUF and MPI both have online documentation: for MUF, type man <topic>; for MPI, type mpi
<topic>.

Additional information can be found in the news and info files. Typing either of these commands should
show a list of topics. The news and info files are written and updated by a wizard; their content and quality
will vary widely.

The staff should also be able to provide help and information: type staff or helpstaff to get a list of
available staff members. Smaller MUCKS may not have a separate helpstaff; in this case type wizzes.

And, there's always The MUCK Manual.

2.0 Commands
Section 2 documents server commands and the user-created commands provided in the standard start-up
database.

2.1 Overview: Dbrefs, Names, Flags, Properties and Lists
All objects on a MUCK, of whatever type — Player, Thing, Room, Exit, or Program — have a unique
identifying number, a 'database reference number', or 'dbref' for short. Multiple items may have the same
name. The type and behavior of all database objects are determined by flags and properties. Both are ways of
storing information about the object. Of the two, flags control more basic or fundamental aspects of the
object. It might be helpful to think of flags as something that determine what an object is and properties as
something that determine what features or attributes and object has (a property is in many ways comparable
to an 'attribute' on MUSH). Multiple properties can be combined to form a 'list'... a collection of props that
together act much like a file or document.

Dbrefs and Names:
A dbref is assigned to each object when it is created. In most cases, when specifying an object by its dbref,
the number should be preceded by an # octothorpe. (Some user-created programs require that the octothorpe
be omitted when the dbref is stored in a property.) The server assigns either the next available number or that
of the most recently recycled object. For example, if the database holds 1,000 objects and all are valid (have
not been recycled), the next object created will be given dbref #1001. If someone then recycles an object,
say #123, the next object created would be given dbref #123. So, dbrefs are not a reliable guide to an
object's age. Dbrefs cannot be changed. Unused dbrefs of recycled objects are 'garbage'.

Multiple objects can have the same name, except for players: there can be several hundred exits named 'out'
on a MUCK, but only one player named 'Ruffin'... and there could (conceivably) be many things, exits, and
programs named 'Ruffin'. All names can be changed with the @name command, syntax @name <object>
= <new name>. To rename a player, the password must be supplied as well: @name <'me' or old
name> = <new name> <password>. A player must have control of an object to rename it; programs

can rename objects if the object and the program have the same controller, or if the program is set W.
(Programs can only name players indirectly: if the player's password is available, a wizbitted program can
force the player or a wizard to rename a player.).

Player names cannot include spaces. 'Madame_Bovary' is an acceptable player name, but 'Madame
Bovary' is not. The names of other types of objects can include spaces.

When handling or modifying an object in the same vacinity as you, you can specify it by its name or part of
its name. Partial names will work, provided that you specify enough characters to distinguish the object from
others in the vacinity: @desc super = <description> will describe 'Superball', provided that
'Superman' or something else with a name beginning with 'Super-' is not in the same vacinity.

When handling or modifying an object that has the same name as something else in the vacinity, or an object
not in the same vacinity as your character, the object will need to be specified by dbref. You can determine
the dbref of an object controlled by you and in the same vacinity by examining it (ex <object>). You can
determine the dbref of objects that you control but are not in the same vacinity with the @find command,
syntax @find <object's name>.

Two substitution strings can be used in place of either a name or dbref: 'me' and 'here'. 'Me' matches
your character's dbref; 'here' matches the dbref of the room you are in.

> @name here = Waterloo Station
 Name set.

> @name pen = Bic Four-Color Ballpoint
 I don't see that here. (* You left the pen at home. *)
> @find pen
 Nyest Penal Colony, Massage Room(#855RJ) (* Includes 'pen'. Ignore. *)
 pen(#1237)
 End of list
 2 objects found.
> @name #1237 = Bic Four-Color Ballpoint
 Name set.

> @name me = Ruffin flipFlap
 You can't give a player that name. (* Already a player named Ruffin. *)
> @name me = Nebuchudnezer flipFlap
 Name set. (* But Nebuchudnezer works. *)

Flags:
Flags — also called 'bits' — provide an economical way to store important information about all objects in
the database.

Usually you can see both the dbref and flags of any objects you control when they appear in a Contents or
Inventory list, or in the case of rooms, simply by doing a look. Whether or not you can see this information is
determined by the S flag set on your character: type @set me =!S to see dbrefs and flags, or @set me
= S to hide them (in this context, the S flag means 'Silent'). Whether you are set Silent or not, you can see
the flags set on an object you control by examining it.

The first flag listed after an object's dbref is its 'type flag'. The type flag functions differently than any
remaining flags. It determines the type of the object; it is set at the time of the object's creation; it cannot be

changed; and it determines the meaning or function of remaining flags. If an object is created with the @dig
command, it will be a room and will have an R flag in the first position. If it is created with the @action or
@open command, it will be an exit and will have an E flag. If it's created with the @program command, it
will be a program and will have an F flag. If it's created with the @pcreate command, it will be a player
and have a P flag. If it's created with the @create command, it will be a thing, and will have none of these
flags. All flags are either 'set' or 'not set' at all times.

The meaning or function of the remaining flags depends on their context... that is, on what type flag the
object has. For example, if a program (something with an F flag in the first position) is set D, the D flag
means 'Debug', and debugging information is shown whenever the program runs. If a room (something with
an R flag in the first position) is set D, the D flag means 'Dark': the 'Contents' list won't appear for a player
who doesn't control the room, and no notices are emitted when players connect and disconnect in the room.
In short, the same flag won't always mean the same thing. While the context-dependent meanings of flags
can be confusing for new users, it provides an elegantly economical way to store important information. The
meanings of each flag in relation to the type flags are listed in Section 2.5.

The type flag is set at the time of an object's creation. The remaining flags can be toggled with the @set
command and the 'not operator' (an ! exclamation point). The syntax for setting a flag is @set <object>
= <flag>. For removing a flag, it's @set <object> = !<flag>. Flags are not case sensitive: @set
here = D and @set here = d produce the same result.

> @set here = D
 Flag set.
> @set here = !D
 Flag reset.

Mortals' use of flags is restricted in a few ways. Most importantly, they can only set flags on things they
control. Players cannot change the state of the Zombie (Z) or Dark (D) flags on themselves. They cannot
set themselves or anything they own Builder (B) or Wizard (W). They must have a Mucker bit (flags M1,
M2, or M3) in order to change the Mucker bit of a program. Players can set the Mucker bit of a program they
own to a level lower than or equal to their own, but not higher. Wizard's control all objects and may change
the state of any flag on any object, with two exceptions: (1) type flags can never be changed; (2) if the MUCK
is compiled with the god_priv option (which it usually is), wizards cannot set players W or !W.

Properties:
A property is a named location on a database object that holds information. Both the server and user-created
programs reference properties to obtain the data they need in order to carry out specific operations. For
example, when someone looks at you, the server references your description property (_/de), retrieves the
information stored there (your desc), and displays it to the person who's looking at you. Properties are often
called just 'props'.

Props are organized into property directories (often called 'propdirs'). The structure and syntax of property
directories are very much like those of file directories in the UNIX or DOS operating systems, with props
being analogous to files and propdirs being analogous to directories. A directory can contain props or
additional directories; names of props and directories are separated by a slash; props and directories are
organized in a hiearchical 'tree' structure such that each prop has a unique path name. So, the desc prop

mentioned above, _/de, is actually the de property in the _ underscore directory.

You can view the props on any object you control by examining it, syntax ex <object> = <path>.
Typing ex me = / would show the 'first level' or 'root directory' of props and directories stored on your
character. Typing ex me = sex would show your sex property. Typing ex me = _page/ would show
properties stored in the propdir created and modified when you use the page command. Directories will be
prefaced by 'dir' and will end with a slash. Properties will be prefaced by something different (usually
str for 'string'), and will end with the value stored in the prop.

Like flags, properties are set and removed with the @set command, though the syntax is slightly different.
The syntax for setting a prop is @set <object> = <[path/]property>: <value>. For removing
a prop, it's @set <object> = <[path/]property>: (that is, a property name followed by just a
colon). To clear a directory, it's @set <object> = <propdir>/: You can remove all the properties
you have set on an object by typing @set <object> = :clear .

>@set me = obstreperous:yes
 Property set.
>@set me = obstreperous:
 Property removed.
>@set me = personality_traits/obstreperous:yes
 Property set.
>@set me = personality_traits/lascivious:yes
 Property set
>@set me = personality_traits/:
 Property removed.
>@set me = :clear
 All user owned properties removed. (* oops *)

It is common practice to separate words in a property name with underscores (@set me =
my_favorite_color:blue), but spaces can be used in property names (@set me = my favorite
color:blue). However, spaces at the beginning and end of property names are removed when the prop is
set. (Spaces at the beginning or end of a property value are not stripped: you can store a string beginning or
ending with spaces, or even a string consisting of only spaces.)

The number, names, and content of properties are not pre-defined as they are in the case of flags. You can't
'make up' a new kind of flag and set it on your character (@set me = G or @set me = 9, say), but you
can create and set any property you like and store any information there, as long as the syntax is correct and
the amount of information stored doesn't exceed certain limits . If you wanted to do @set me =
number_of_pickles_in_my_jar:32, you could, though the information might not be especially
useful. (There are some restrictions on what properties you can set, discussed in Section 2.1.1)

While you can set virtually any property, the server and user-created commands will expect specific
information to be stored in specific, predefined properties. The server will always reference the _/de prop
when obtaining a desc; the hand command will always check your _hand_ok prop. So, using a program or
configuring an object is often a matter of determining what props are referenced (by reading #help or
program documentation, or by asking players or staff) and setting them appropriately. Important and
frequently used properties are stored in the correct location by server commands: @desc, @success,
@osuccess, @drop, @odrop, @fail, @ofail, and various @lock commands all store

information in the _/ directory. (Properties in the _/ directory and their values are often called 'messages'
and 'locks'. See Sections 2.1.2 and 2.3.)

>@create Feep
 Feep created with number #1237
>@desc feep = A cute little feep.
 Description set.
>@succ feep = You pick up the feep. It warbles contentedly.
 Message set.
>@osucc feep = picks up the feep. It warbles contentedly.
 Message set.
>@fail feep = You try to pick up the feep, but it scuttles away
whimpering!
 Message set.
>@ofail feep = tries to pick up the feep, but it scuttles away
whimpering!
 Message set.
>@drop feep = You set the feep down gently. It nuzzles your ankle.
 Message set.
>@odrop feep = sets the feep down gently. It nuzzles %p ankle.
 Message set.
>@lock feep = me
 Locked.
>@chlock feep = me
 Chown lock set.

 > ex feep = _/
 lok /_/chlk:Mistral(#100PWX)
 str /_/de:A cute little feep.
 str /_/dr:You set the feep down gently. It nuzzles your ankle.
 str /_/fl:You try to pick up the feep, but it scuttles away whimpering!
 lok /_/lok:Mistral(#100PWX)
 str /_/odr:sets the feep down gently. It nuzzles %p ankle.
 str /_/ofl:tries to pick up the feep, but it scuttles away whimpering!
 str /_/osc:picks up the feep. It warbles contentedly.
 str /_/sc:You pick up the feep. It warbles contentedly.

The properties in the _/ directory trigger events or messages when the object is used in a certain way. For
example, the @success message is displayed to a player who Successfully uses the object. If the object is a
thing, 'successful use' means picking it up. For a room, 'success' means looking at the room. For an exit, it
means passing through the exit or using the exit as a command. The @osuccess message uses the same
definitions of 'success', but in this case the message is shown to Other players present, rather than the
triggering player.

@Fail works similarly to @success, but in this case the message is shown when a player fails to use the
object successfully, usually because it is locked against him (locks are discussed in Section 2.3), and
@ofail has a similar relationship to @osuccess.

On a thing, a @drop message is shown to a player who drops the object; the @odrop message is shown to
other players present when the object is dropped. When a @drop message is set on an exit, the message is
shown to the player when he arrives in the destination room. The @odrop message is shown to other players
in the destination room.

Lists:
In addition to directories, props can also be organized in 'lists'. A list is a group of properties which are
handled together in such a way that they emulate a document or computer file. Lists can be created and
edited with the list editor, command lsedit, syntax lsedit <object> = <list name>. This is
useful for descriptions that need formatting such as paragraph breaks, indentations, and so forth. Complex
MPI strings can be stored in a list rather than a property as well, in which case indentation and other
whitespace can be used to make the code more readable than it would be as one long uninterrupted string.
There are other uses.

>lsedit here = maindesc
 < Welcome to the list editor. You can get help by entering '.h' >
 < '.end' will exit and save the list. '.abort' will abort any changes. >
 < To save changes to the list, and continue editing, use '.save' >

 < Insert at line 1 >

 <you type type type some text text text>

> .end
 < Editor exited. >
 < list saved. >

Lists are stored as a set of properties sharing the same path name, and ending with #/<line number>.

> ex here = maindesc#/
 str /maindesc#/1: (a line of text you entered...)
 str /maindesc#/2: (another line...)
 str /maindesc#/3: (another line...)
 (etc)

The list name can be a path name that includes propdirs. For example, you could store multiple descs in
propdir _descs.

> lsedit me = _descs/snazzy
 <enter your 'snazzy' desc>
> .end

> lsedit me = _descs/grungy
 <enter your 'grungy' desc>
> .end

(The server, recall, always references the _/de property for a description. If you write a description with
lsedit, you will need to put an MPI string in this property that tells the server where to find the description
and how to display it.

> lsedit me = _descs/snazzy
 <enter 'snazzy' desc... >
> look me
 You see nothing special.
> @desc me = {list:_descs/snazzy}
 Description set.
> look me
 Ooo la la! Today Mistral is modeling the latest from the Spiegal
 Catalogue: a gownless evening strap with... (etc etc)

The MPI string stored in _/de can be made considerably more elaborate and flexible than the one shown
here. (See Section 3.1 for a more complete discussion of MPI.)

The syntax for removing a list is @set <object> = <[path/]list name>#/:

> @set me = descs/snazzy#/:
 Property removed.

2.1.1 Protected, Restricted, and Wizard Props
Property handling is governed by a system of privileges, though in most cases this will be transparent to the
user: you will usually be able to set the properties you want without even being aware that the server is
checking to see if you're allowed to do so. Besides 'normal' props, there are three classes of priviledged
properties: protected, restricted, and wizard. The class of a property or propdir is determined by the first
character in its name. A prop or propdir beginning with an _ underscore, % percent sign, or . period is
'protected'. A prop or propdir beginning with a ~ tilde is 'restricted'. A prop or propdir beginning with an @
at-mark is 'wizard'. If the prop or propdir begins with any other character, it is 'normal' or 'unprotected'.
(Note: the 'first character' restriction applies to any property or propdir. So, @email, @/email, and
data/personal/@email are all wizard props: each includes a prop or propdir that begins with an @ at-
mark.)

Properties beginning with a an _ underscore can only be written to by the owner of the object on which the
property is stored, or by programs owned by the owner, or by programs running at M3 or W.

Properties beginning with a . period can only be written to or read by the owner of the object on which the
property is stored, or by programs owned by the owner, or by programs running at M3 or W.

Properties beginning with a % percent sign, like _ underscore properties, can only be written to by the owner
or by programs owned by the owner. The % percent sign properties have the additional function of over-
riding pronoun and name substitutions. For example, if Jessy does @set me = %n:the Scamper Gal,
the prop will be protected, and will serve the additional function of causing 'the Scamper Gal' instead
of 'Jessy' to be substituted in messages that use the '%n' substitution string. (See Section 2.1.7 for
additional information on substitution strings.)

A restricted property (~) may be read like an unprotected prop, however it may only be modified by a
wizard or a wizbitted program. A common use of restricted props is appointing non-wiz staff members. Staff
commands, exits to administrative areas, and so forth, can be locked so that they may only be used by
characters with specific restricted prop, such as '~staff'.

A wizard property (@) may only be read or modified by a wizard or a wizbitted program. The server records
connection data in players' propdir @/. On some MUCKs, wizard props and propdirs are used to record
administrative information such as players' email addresses. Some wizbitted programs record potentially
sensitive data such as mail in a wizard propdir stored on players.

Locks can read any property—including restricted and wizard properties—but may only check for matches
with a specific value. (See Section 2.3.)

2.1.2 Messages and Message Properties
As indicated earlier, a set of properties in the _/ directory is given special handling by the server. They can
be set with a group of server commands such as @succ, @ofail, etc., and they cause strings to be parsed
and displayed automatically whenever certain events happen. Collectively, this group of commands,
properties, and their values are called 'messages'.

 Command/Message Type Property
 @desc _/de
 @succ _/sc
 @osucc _/osc
 @fail _/fl
 @ofail _/ofl
 @drop _/dr
 @odrop _/odr
 @pecho _/pecho
 @oecho _/oecho

(There does not seem to be a definitive pronunciation for messages: when speaking in RL, some people
would say 'at-fail' for @fail, and others would say simply 'fail'.)

The @desc message is evaluated and displayed to any user who looks at an object of any type.

> @desc me = A nymph with green hair.{look-notify}
 Message set.
> l me
 [Kiri looked at you.]
 A nymph with green hair.

The @succ message is evaluated and displayed to any user who successfully uses an object. The meaning of
'success' varies depending on the object type. To successfully use a thing or a program means to pick it up.
To successfully use a room means to look at it. To successfully use an exit means to pass through it or use it
as a command that triggers a program. To successfully use a player means to steal one of her pennies with the
rob command.

> @succ out = You step out back.
 Message set.
> out
 You step out back.

The @osucc message is evaluated and displayed to all players in a room where a player successfully uses
the object, other than the player in question. The @osucc message (that is, the string stored in the object's
_/osc property) is prefaced with the user's name when it is displayed.

> @osucc out = steps out back.
 Message set.

 (Kiri types 'out'... others see...)
 Kiri steps out back.

The @fail is evaluated and displayed to a user who fails to successfully use an object. The normal reason
for failure is that the object is locked against the player. The terms for success or failure are those indicated
above, for @succ.

> @fail vault = Ahem. Only authorized bank employees may open the
 vault. Various alarms begin to sound.
 Message set.
> @lock vault = ~banker:yes
 Locked.
> vault
 Ahem. Only authorized bank employees may open the vault.

The @ofail message is evaluated and displayed to all players in a room where a player fails to successfully
use the object, except the player in question. The @ofail message is prefaced with the user's name when it
is displayed.

> @ofail vault = tried to open the vault! Shrill alarms begin ringing!
 Message set.

 (Kiri types 'vault'... others see...)
 Kiri tried to open the vault! Shrill alarms begin ringing!

The @drop message is evaluated and displayed to a player who triggers a drop. For a thing or program, a
drop is triggered when the object is dropped. For a room, a drop is triggered whenever an object is dropped in
the room. For an exit, a drop is triggered when a player (or other object type) passes through th exit (using an
exit/action linked to a program does not trigger a drop). For a player, a drop is triggered when he or she is
killed.

> @drop grenade = BANG!
 Message set.
> drop grenade
 BANG!

The @odrop message is is evaluated and displayed to all players in a room where a player drops an object,
except for the triggering player, or all other players in the room a player arrives in when she passes through
an exit. The @odrop message is prefaced with the user's name when it is displayed.

> @odrop out = comes out of the house.
 Message set.

 (Kiri types 'drop out'... the players in the outside room see...)
 Kiri comes out of the house.
 Kiri has arrived.

> @odrop grenade = drops a grenade! Run! {null:{delay:3,{lit:
 {null:{tell:BANG!}}}}}
 Message set.

 (Kiri types 'drop grenade'... others see...)
 Kiri drops a grenade! Run!
 BANG!

@pecho and @oecho are somewhat different than the preceding messages, having to do with the format of
messages transmitted (or 'broadcast') by puppets and vehicles.

By default, output broadcast from a puppet is prefaced by the puppet's name and a > greater than sign.
Typing @pecho <puppet name> = <new preface string> sets the puppet object's _/pecho
property, which will become the new preface string. (See Section 4.3 for more information on creating
puppets.)

> z look
 Squiggy> Amberside Inn, Tavern
 Squiggy> At first glance the tavern seems little changed from
 Squiggy> days when pirate sloops sought haven in the protected
 Squiggy> coves of Amberside's cliffs: the beams are still low
 Squiggy> and smoke-stained...

> @pecho squiggly = *
 Message set.

> ex squig = _/
 str /_/pecho:*
 1 property listed.

> z look
 * Amberside Inn, Tavern
 * At first glance the tavern seems little changed from days when
 * pirate sloops sought haven in the protected coves of Amberside's
 * cliffs: the beams are still low and smoke-stained...

By default, messages broadcast from the exterior of a vehicle object to its interior will be prefaced by the
string Outside> . Typing @oecho <vehicle object> = <new preface string> will set the
vehicle's _/oecho property, which will become the new preface string. (See Section 4.5 for more
information on creating vehicles.)

> @create 1967 Corvette Sting Ray
 1967 Corvette Sting Ray created with number #558.
> @set 1967 = V
 Flag set.
> @act getin = 1967
 Action created with number #559 and attached.
> @link getin = 1967
 Linked to 1967 Corvette Sting Ray(#558V)

> drop 1967
 Dropped.
> getin
 1967 Corvette Sting Ray(#558V)

> z :raps sharply on the window... "Can you hear me in there,
 mistress?"
 Outside> Squiqqy raps sharply on the window... "Can you hear
 me in there, mistress?"

> @oecho here = >>>
 Message set.

> z :raps again. "What about now?"
 >>> Squiggy raps again. "What about now?"

2.1.3 Data Types and Setting Properties
In the vast majority of cases, props can be correctly set by players and wizards with the @set command, as
described above. However, in rare cases the 'data type' of a property needs special handling, and a different
command is needed: @propset.

Data handled by the MUCK server is 'typed', as it is in many computer languages, including C (the language
the server program is written in) and MUF (one of the two programming languages available on MUCKs). The
server handles different types of data, and most operations require a specific type of data. In this context, the
relevant types are 'string', 'dbref', 'integer', and 'float'. (There is also a fifth data type: 'lock', which is
discussed in Section 2.3. Type 'float' is only available on MUCK versions 6.0 or higher.)

A string is a series of zero or more characters (a zero-length string is called a 'null string'). A dbref is a
database reference number. An integer is a whole number. A float is a floating point decimal number. These
values can look the same but have different types. The type of a datum is determined when it is stored. The
string of numeral characters "123", the #dbref 123, and the integer 123, and the float 123.0 are four different
values.

The @set command always stores property data as a string. The following three commands store
information in three different properties, but it's the same value in each case: a string composed of the
characters '1', '2', and '3'.

> @set me = my_favorite_dbref:123
 Propery set.
> @set me = my_favorite_integer:123
 Property set.
> @set me = my_favorite_string:123
 Property set.

If you typed these commands, and then did ex me = /, you would see the three properties, each prefaced
by str, meaning 'this data is stored as a string'.

> ex me = /
 str /my_favorite_dbref:123
 str /my_favorite_integer:123
 str /my_favorite_string:123

Programs and commands often store data as dbrefs or integers rather than strings; occasionally, players will
want or need to do so as well. The command for doing this is @propset, syntax @propset <object>
= <data type> : <[path/]property> : <value>. The following three commands store
information in three different properties, and although they look similar, it's a different value in each case: a
dbref, an integer, and a string respectively.

> @propset me = dbref:my_favorite_dbref:#123
 Property set.
> @propset me = int:my_favorite_integer:123
 Property set.
> @propset me = str:my_favorite_string:123
 Property set.

(Type 'float' has been omitted from this example: at the time of this writing, @propset does not handle
floating point numbers.)

If you typed these commands, and then did ex me = /, you would see the three properties, prefaced by
ref, int, and str respectively, with each preface showing the type of the data stored in the property.

> ex me = /
 ref /my_favorite_dbref:Hortense(#123PBJ)
 int /my_favorite_integer:123
 str /my_favorite_string:123

Tip: there is also a server shortcut for setting properties with values of type integer: put a ^ carot before the
number.

> @set me = lucky_number:^5
 Property set.
> ex me = lucky_number
 int /lucky_number:5

2.1.4 Triggering From Properties
In most cases, programs and server operations are triggered (i.e. caused to run or execute) by typing a
command. However, they can also be triggered from a number of protected properties: all message props
(_/de, _/sc, etc.), plus _connect, _oconnect, _disconnect, _odisconnect,
_arrive, _oarrive, _depart, _odepart, and _listen.

Performing any of the actions implied by these property names sends information to the server and (if the
property is set correctly) causes messages to be displayed, an MPI string to be parsed, or a program to run.
For example, if you set a _connect prop on your character to trigger a certain program, the program will
run each time you connect; if you put an MPI string in your _/de prop, it will be parsed each time someone
looks at you. The server searches up the environment tree (see Section 2.2) for triggering props. For example,

if _connect prop that triggers a program is set on your character, the program will run each time you
connect. If it's set on a room, the program will run each time someone connects in that room. If it's set on the
global parent room (#0), the program will run each time someone connects anywhere on the MUCK.

The manner in which the props are set differs depending on which prop it is (the _/ directory is handled
differently than the others, such a _connect or _listen) and on what the intended result is (messages are
handled differently than MPI, which is handled differently than program calls).

To cause a message to be displayed by a _/ prop (_/de, _/sc, etc), simply set the message as a string,
with @set or the specific server command. @o- messages such as @osucc, @ofail, and @odrop are
prepended with the name of the triggering player (or other object type).

> @desc out=A simple wooden door.
 Message set.
> look out
 A simple wooden door.

> @succ out=You decide to go outside for a bit...
 Message set.
> out
 You decide to go outsides for a bit...

> @set out=_/sc:You head outside.
 Property set.
> out
 You head outside.

MPI strings in _/ props will be parsed automatically.

> @desc watch=You glance at your watch. The time is {time}.
 look watch
 You glance at your watch. The time is 01:44:31.

To trigger a MUF program from a _/ prop, preceed the dbref of the program with an @ at-mark. For example,
let's assume the dbref of the 'Obvious Exits' program is #123:

> @succ here=@#123
 Message set.
> look here
 Messy Room(#545RJ)
 Boy, this place is a mess!
 Obvious Exits:
 Out <O>

The other triggering props (_arrive, _oconnect, etc) are handled slightly differently. Simple strings
cause no result, MPI must be preceeded with an & ampersand in order to be parsed, and MUF programs can be
called with just a string indicating the dbref.

> @set me=_connect:555
 Property set.
> @set me=_arrive:&{null:{otell:waltzes in.}}

 Property set.

These triggers can be set up as a propdir rather than a single prop, in order to trigger multiple results from the
same action. For example, the following settings would trigger both programs #581 and #555 each time
someone connects in the room. The propdirs are evaluated in alphabetical order, so #581 would execute
first. (Other than determining alphabetical order, the prop names following the first / slash mark have no
effect: they can be whatever you like.)

> @set here=_connect/desc-check:#581
 Property set.
> @set here=_connect/my-wwf:#555
 Property set.

The _listen is triggered by any activity. As such, it is both very useful and very easily abused.
Permissions safeguards are coded into the server for _listen: the only result that can be triggered is
execution of a program; the program must be set Link_OK and have a Mucker level equal to or higher than
a level set by the MUCK administrators. Usually this parameter is set to 3 or 4 (M4 is 'wizard'). 'Bot programs
and automatic 'noise' or 'event' programs are common examples. The prop is set simply by putting the dbref
of the program to run in the property value.

> @find noises
 noises.muf(#812FLM3)
 End of List
 1 objects found.
> @set here=_listen/noise:812
 Property set.

2.1.5 Registered Names
Objects can be specified by 'registered names' as well as by names and dbrefs. A registered name is an alias
that can (like a dbref) be used regardless of the object's location, but (like a name) consisting of a memorable
string. The primary use is to provide a convenient, memorable way of specifying an item, regardless of its
location and ownership. For example, a player on a large MUCK might have a puppet with a long, difficult to
remember dbref, such as #128629. If the player frequently wanted to teleport the puppet to her from
somewhere else, she would need to either memorize the dbref or repeatedly retrieve it with the @find
command. As an alternative, she could give the puppet an easy-to-remember registered name such as 'pup'.
From that point on, the puppet could be specified with the name 'pup' preceeded by a $ dollar sign, rather
than by dbref.

Players can create registered names — usuable only by the player — with the @register command,
syntax @reg #me <object> = <registered name>. (The information is stored in the player's
_reg/ directory.)

> @find Squiggy
 Squiggy(#128629XZ)
 End of List
 1 objects found.
> @reg #me #128629 = pup

 Now registered as _reg/pup: Squiggy(#128629XZ) on Jessy(#2PWQX)
> @tel $pup = me
 Teleported.
> i
 You are carrying:
 Squiggy(#128629XZ)
 You have 5086 pennies.

Individual registered names may also be set when an object is created. The standard creation commands —
@create, @dig, @action, and @open — each take two optional argument fields, separated by =
equals signs. The first of these fields is specific to each command; the second field for all four may be used
to specify a registered name.

 @create <name> = <cost in pennies> = <reg name>
 @dig <name> = <parent room> = <reg name>
 @action <name> = <source> = <reg name>
 @open <name> = <link> = <reg name>

> @create Mary Poppins Umbrella == umbi
 Mary Poppins Umbrella created with number 226.
 Registered as $umbi
> ex $umbi
 Mary Poppins Umbrella(#226) Owner: Mistral
 Type: THING
 Created: Fri May 09 14:33:47 1997
 Modified: Fri May 09 14:33:47 1997
 Last used: Fri May 09 14:33:47 1997
 Usecount: 0
> ex me=_reg/
 ref /_reg/umbi:Mary Poppins Umbrella(#226)

> @dig OOCafe = #143 = cafe
 OOCafe created with room number 225.
 Trying to set parent...
 Parent set to OOC Environment(#143RL).
 Room registered as $cafe

> @open Enter Garden = $garden = gogard
 Exit opened with number 224.
 Trying to link...
 Linked to Secret Garden(#455R).
 Registered as $gogard

Wizards can set global registered names — usuable by all players — syntax @reg <object> =
<registered name>. A frequent and convenient use of global registered names is to provide an alias for
publicly available programs such as 'do-nothing' and 'obvious-exits'. Without global registered names,
players would need to find the dbrefs of these programs each time they needed them for building purposes.
Since the players do not control these programs, finding the dbrefs can be difficult. (To create a personal
registered name as a wizard, use the #me> option: @reg #me <object> = <registered name>)

> @find obv
 gen-Obvexits(#2002FLM3)
 End of List
 1 objects found.
> @reg #2002 = exits
 Now registered as _reg/exits: gen-Obvexits(#2002) on The Void(#0R)
> @succ here = @$exits
 Message set.

2.1.6 Pattern Matching and Output Types
As indicated, the @find command can be used to locate items with a given name. For more flexible
searches, you can use pattern matching (a limited version of regular expressions) to find objects whose name
matches a certain pattern, rather than matching the name string literally. A pattern consists of logical and
grouping operators, wildcard characters, and/or literal characters. @Find —and the related search commands
@owned, @contents, and @entrances — can be used with a subset of standard regular expression
conventions, and additional parameters that specify 'output types' (parameters for values such as memory
used, time since used or modified, etc.)

Suppose that you have created a Coral Reef area, with interesting scenery and games: players try to avoid
sharks, wrestle octopi, and find sunken treasure before they run out of breath and are forced to return to the
surface. To use the rooms and games, a player must have a snorkle. You have set up a 'make snorkle'
action linked to an M2 program that changes an object into a snorkle (it sets all the properties used by your
games). And, you have a Snorkle Rental Booth: a room where can people rent snorkles or read 'The
Complete Book of Snorkles' and 'Field Guide to the Lesser Coral Reef' (help on how to use the area). The
reef rooms have names like 'Coral Reef, Sandy Wash' and 'Coral Reef, Moray's Lair'. Occassionally, you
need to find these objects... to recall and update your snorkles or track down your wandering shark-bot, for
example.

You can use literal matches to find objects whose name includes the string you are trying to match. Matching
is not case-sensitive.

> @find complete book
 The Complete Book of Snorkles(#811SJ)
 1 objects found.

> @find coral reef
 Field Guide to the Lesser Coral Reef(#810SJ)
 Coral Reef, Sandy Wash(#802RJ)
 Coral Reef, Moray's Lair(#805RJ)
 Coral Reef, Near the Surface(#809RJ)
 Coral Reef, Weed-Shrouded Cave(#812RJ)
 Coral Reef, Sunken Hull(#815RJ)
 Coral Reef, Dark Cave(#817RJ)
 <etc.>
 <etc.>
 End of List

 16 objects found.

The * and ? wildcard characters allow you to search for names that match a pattern, rather than a literal
string. The * asterix wildcard (sometimes called a 'glob') matches any zero or more characters; the ? question
mark matches any single character.

You could find your two cave rooms in the coral reef area (and leave out other cave rooms you might have)
by beginning putting a glob between 'Coral' and 'Cave'.

> @find coral*cave
 Coral Reef, Weed-Shrouded Cave(#812RJ)
 Coral Reef, Dark Cave(#817RJ)
 End of List
 2 objects found.

You could find all the reef rooms, leaving out the book 'Field Guide to the Lesser Coral Reef', by searching
for 'reef' followed by a ? question mark, which would require that there be at least one character after the
string 'reef'.

> @find reef?
 Coral Reef, Sandy Wash(#802RJ)
 Coral Reef, Moray's Lair(#805RJ)
 Coral Reef, Near the Surface(#809RJ)
 <etc.>
 <etc.>
 End of List
 15 objects found.

The {curly braces} grouping operators delimit word patterns. To find all your snorkle objects and the
'make snorkle' action, but omit 'The Complete Book of Snorkles', you could delimit 'snorkle' as a word,
and not simply a string.

> @find {snorkle}
 Snorkle Rental Booth(#856RJ)
 make snorkle(#857ED)
 Snorkle 1(#854)
 Snorkle 2(#859)
 Snorkle 3(#881)
 Snorkle 4(#882)
 Snorkle 5(#883)
 Snorkle 6(#884)
 Snorkle 7(#885)
 Snorkle 8(#886)
 Snorkle 9(#887)
 Snorkle 10(#888)
 Snorkle 11(#889)
 Snorkle 12(#890)
 End of List
 13 objects found.

One can search for objects whose names include words from a group of valid words by separating the words

with the 'or' operator, a | vertical bar. For example, you could find all objects that include the words 'sunken'
or 'surface'.

> @find {sunken|surface}
 Coral Reef, Near the Surface(#809RJ)
 Coral Reef, Sunken Hull(#815RJ)
 End of List
 2 objects found.

The [square brackets] grouping operators delimit character groups or ranges or characters.

A group of characters in square brackets are treated as valid single characters. A find for 'coral reef,
[wdn]' would find the coral reef rooms with either 'w', 'd', or 'n' following the string 'coral reef, '.

> @find coral reef, [wdn]
 Coral Reef, Near the Surface(#809RJ)
 Coral Reef, Weed-Shrouded Cave(#812RJ)
 Coral Reef, Dark Cave(#817RJ)
 End of List
 3 objects found.

Instead of typing each valid character, you can also designate a range of valid characters, such as [0-9],
[a-z], or [A-Z]. You could find all your snorkle objects, which all have a numeric character following
the string 'Snorkle ', by using [0-9] as the range of characters.

> @find snorkle [0-9]
 Snorkle 1(#854)
 Snorkle 2(#859)
 Snorkle 3(#881)
 Snorkle 4(#882)
 Snorkle 5(#883)
 Snorkle 6(#884)
 Snorkle 7(#885)
 Snorkle 8(#886)
 Snorkle 9(#887)
 Snorkle 10(#888)
 Snorkle 11(#889)
 Snorkle 12(#890)
 End of List
 12 objects found.

Note that the [square brackets] delimit character ranges, not numeric ranges. A find for
'snorkles [1-12]' won't work... or won't work as one might intend. It finds all objects with either
characters in the range of '1 to 1' or the character '2' following the string 'snorkles '.

> @find snorkle [1-12]
 Snorkle 1(#8454)
 Snorkle 2(#8459)
 snorkle 10(#8488)
 snorkle 11(#8489)

 snorkle 12(#8490)
 End of List
 5 objects found.

Output Types
Searches with @find and the related commands (@owned, @contents, and @entrances) may also be
narrowed by object type and several other values, and may return additional information such as the objects'
owners and locations. The extended syntax is:

 @find <name | pattern> = <parameter> = <output type>

One or several search parameters may be used. Valid search parameters may be a type flag, a Mucker level,
or the following special values:

U
Show only unlinked objects

@
Show only old and unused objects

~<size>
Show only objects with current memory used greater than
<size>

^<size>
Show only objects with total memory used greater than
<size>

An output type parameter must be typed in full; only one output type may be used per search. Valid types
include:

owners
List owners along with objects

links
List links along with objects

size
Show memory size

count
Don't list objects: just show total
found

location
Show objects' locations

Some examples:

This search would list any unlinked exits you control...

> @find = EU
 South;sout;sou;so;s(#528E)
 North;nort;nor;no;n(#533E)
 End of List
 2 objects found.

This search would list any old and unused objects you control, along with their locations...
> @find = @ = location
 Faded rose(#761) Mistral(#100)
 End of List
 1 objects found.

Objects become 'old and unused' if none of their 'created', 'modified', or 'last used'
timestamps is more recent than the aging_time system parameter.

This search will find all your M1 programs...
> @find = 1
 HelloWorld.muf(#976FM1)
 TrainingWheels.muf(#978FDM1)
 WhatsMyName.muf(#979FM1)
 CountMyBellyButton.muf(#980FM1)
 End of List
 4 objects found.

This search will find any objects you control which use more than 2000 bytes of memory, along with the
current memory size...
> @find = ~2000 = size
 Manhattan Phonebook(#1301) 1932373346 bytes.
 End of List
 1 objects found.

For additional information on output types and pattern matching, see the entry for @find in the Server
Command Reference (Section 2.6) and the entry for SMATCH in the MUF Reference (Section 3.2.5).

2.1.7 Pronoun and Name Substitution
Messages returned by fields such as @success, @drop, etc., and also the formatting of a number of
commands and programs such as page, may be dynamically formatted for a player's name and gender:
substitution strings (a % percent mark followed by a key character) are replaced by the appropriate name or
pronoun. Standard substitution strings are:

 %a (absolute) = Name's, his, hers, its.

 %s (subjective) = Name, he, she, it.

 %o (objective) = Name, him, her, it.

 %p (possessive) = Name's, his, her, its.

 %r (reflexive) = Name, himself, herself, itself.

 %n (player's name) = Name.

Capitalizing the substitution string — such as %S or %R — causes the substitute value to be capitalized as
well.

The server examines the /sex property of the triggering player (or other object type) and substitutes as
needed. Supported values for the sex property are 'male', 'female', and 'neuter'. If the property is not set, the
player's name is used instead.

> @set $pup = sex:male
 Property set.
> @osucc bonk = bonks %r on the head. %S exclaims, "I could
 have had a V8!"
 Message set.
> pp bonk
 Squiggy bonks himself on the head. He exclaims, "I could
 have had a V8!"
> @set $pup = sex:neuter
 Property set.
> pp bonk
 Squiggy bonks itself on the head. It exclaims, "I could
 have had a V8!"

The values for these substitutions may be over-ridden by setting a property with the same name as the
substitution string. These settings give Squiggy a nickname and some way PC pronouns...

> @set $pup = %n:The Squigmeister
 Property set.
> @set $pup = %a:hes
 Property set.
> @set $pup = %s:s/he
 Property set.
> @set $pup = %o:hem
 Property set.
> @set $pup = %p:hes
 Property set.
> @set $pup = %r:hemself
 Property set.

> pp bonk
 Squiggy bonks hemself on the head. S/he exclaims, "I could
 have had a V8!"

2.2 Overview: Rooms and the Environment Tree.
Rooms are objects created with the @dig command and having the type flag R.

The syntax for the @dig command is

 @dig <room> [=<parent> [=<regname>]]

The position of rooms —and the resulting 'geography' of the MUCK — is determined in two ways. In addition
to named exits creating the illusion of spatial relationships (e.g. having a room called 'The Village Green' that
can be reached by travelling West from 'The Cove'), rooms exist in a hierarchical tree structure known as the
'environment tree'. One can lead a rich VR life without ever needing to know about the MUCK's environment
tree, but builders and administrators will profit from an understanding of how it works.

As an analogy, one might think of the rooms on a MUCK as numerous nested boxes. Room #0, the 'global
parent', would in our analogy be a large box containing all the other boxes... all the other rooms. Rooms
inside #0 can also contain rooms: the boxes can contain other boxes, in an unending series. The boxes
(rooms) can contain items (players, things, etc) as well as other boxes. A room that contains another room is
said to be a 'parent room'; a room contained in another room is said to be a 'daughter room'. A given room
can be contained in another and at the same time contain other rooms: in this case, the room is both a parent
and daughter room. Intermediate rooms of this type are often called 'environment rooms'. (Or, another
analogy: rooms are like directories in a computer file system: the root directory is analogous to Room #0;
environment rooms and rooms are analogous to directories and subdirectories within the root directory;
players and objects in rooms are analogous to files in these directories.) Environment rooms are used to
define areas of a MUCK and to provide commands or features that should only be available in certain areas
(more on this below).

You can view the series of rooms containing the room you are located in by typing @trace here.

> @trace here
 Sinshe Village, by the Pier(#687RJ)
 Sinshe Parent Room(#635RA)
 Environment: Lowlands(#285RA)
 Rainforest Parent Room(#121RWA)
 Rainforest: Main Prarent(#118RA)
 Master Environment(#101RA)
 Missing

In this example, the administrators of the MUCK have carefully laid out a consistent, hierarchical environment
tree. In addition to the 'geographical position' of Sinshe Village, each room on the MUCK has a specific and
meaningful place in the environment tree. The village pier is nested inside — or 'parented to' — the Sinshe
Parent Room (#635), which presumably contains all the rooms that make up the village of Sinshe.
This room is in turn parented to Environment: Lowlands (#285), which would contain the parent
rooms for all areas in the lowlands. The series continues up through rooms #121, #118, #101, and
finally, room #0, which appears on this list as **Missing** (to mortals, rooms not set Abode and not
controlled by them appear as **Missing** on a @trace; for security reasons, the global parent of a
MUCK is usually not set Abode, and as a result the last item on the list will be **Missing**.)

In fact, not only rooms but all objects on a MUCK have a position in the environment tree. Exits are
considered to be located in or on the object to which they are attached. Players and things are always located
in a specific room or thing... but, unlike rooms and exits, they move around. The @trace command works
on any object. If a player were holding an object called 'paper sack', @trace paper sack would show
the sack's current position in the environment tree.

> @trace paper sack

 paper sack(#5474)
 Jessy(#2WQJ)
 Sinshe Village, by the Pier(#687RJ)
 Sinshe Parent Room(#635RA)
 Environment: Lowlands(#285RA)
 Rainforest Parent Room(#121RWA)
 Rainforest: Main Prarent(#118RA)
 Master Environment(#101RA)
 Missing

A newly created room is parented to the first room above it that is set Abode, or the first room controlled by
the player issuing the @dig command. If no rooms in the environment path meet one of these criteria, it is
parented to Room #0. Keeping parent rooms set Abode will insure that new rooms are correctly parented: if
Jessy stood on the pier and typed @dig Under the Pier, the new room would be correctly parented to
Sinshe Parent Room(#635RA), the same parent as that of the pier proper.

Overview: Things
Things are objects created with the @create command and having no type flag. Both rooms and things can
contain other objects.

The syntax for @create is:

 @create <object> [=<cost> [=<regname>]]

The standard start-up database includes the user-created commands put and fetch. Put allows you to put
an item you are carrying inside another item (syntax put <object> in <object>). Fetch allows
you to retrieve an item from inside another (syntax fetch <object> from <object>). Partial names
may be used for <object>.

> put kitty snacks in backpack
 Putting Kitty Snacks in Backpack.
> fetch kitty from back
 Fetching Kitty Snacks from Backpack.

Things can also be set up as vehicles, by setting their Vehicle flag and creating an exit that is both attached
and linked to the thing. For vehicles, and occassionally for other objects, you would want to describe the
interior of the thing. The interior of a thing can be given a description with the @idescribe command,
syntax @idesc <object> = <interior description>.

> @create tRanSMogriFIER
 tRanSMogriFIER created with number 5489.

> @desc trans = A large cardboard box with tRanSMogriFIER
 written on the side in marker, and an arrow that says ----> IN
 Description set.
> @idesc tRanSMogriFIER = An enthusiastic artist has made lots of
 buttons and monsters with a marker on the sides.

 Description set.

> l trans
 A large cardboard box with tRanSMogriFIER written on the side in
 marker, and an arrow that says ----> IN

> @act get in;in;enter = trans
 Action created with number #2543 and attached to tRanSMogriFIER(#5489)
> @link get in = trans
 Linked to gen-nothing.muf(#363FLM2)
> get in
 tRanSMogriFIER(#5489)
 An enthusiastic artist has made lots of buttons and monsters with
 a marker on the sides.

See Section 4.4 for more information on making vehicles.

2.2.1 Droptos
If a room is linked to another room or to a thing, the object linked to will serve as the room's 'dropto'. A
dropto is a location to which dropped objects will be moved.

> @dig Lost and Found = #102 = lnf
 Lost and Found created with room number 198.
 Trying to set parent...
 Parent set to OOC Environment(#102RA).
 Room registered as $lnf

> @link here = #102
 Dropto set.
> Drop bic
 Dropped.
> @contents #198
 Bic Four-Color Ballpoint(#1237)
 End of List
 1 objects found.

If a room's Sticky flag is set, the drop-to is delayed until all players have left the room. To remove a
dropto, @unlink the room. To remove a Sticky bit, type @set here = !S.

2.2.2 Looktraps
'Looktraps' are details or 'fake objects' in a room. For example, rather than creating a 'Sign' object with
instructions on how to use some local commands and placing it in a room, you could mention the sign in the
room's desc and create it as a looktrap. There will be no separated dbref'd object named 'Sign', but players
will still be able to do look sign and see it. The primary value of looktraps is efficiency: because no
separate object is created, overall database size is somewhat smaller, and commands that must search the

database have one fewer objects to examine. And, if your MUCK uses a quota system, there will be one fewer
object counting against your quota.

Looktraps are stored as properties in the _details/ directory. Names of looktraps follow the aliasing
conventions of exits: strings delimited by ; semicolons serve as alias names.

> @set here = _details/sign;plaque;notice:To see who lives here,
 type 'look mailboxes'. To get a home here, type 'claim #',
 using an unclaimed home number for '#'.
 Property set.

> l plaque
 To see who lives here, type 'look mailboxes'. To get a home here,
 type 'claim #', using an unclaimed home number for '#'.

Looktraps are automatically parsed for MPI.

This looktrap puts the sign text in a list, allowing better control over formatting...
> @set here = _details/sign;plaque;notice:{list:signtext}
 Property set.
> lsedit here = signtext
 < Welcome to the list editor. You can get help by entering '.h'
>
 < '.end' will exit and save the list. '.abort' will abort any changes.
>
 < To save changes to the list, and continue editing, use '.save'
>
 < Insert at line 1 >
> ... text text text ...
> ... blah blah blah ...
> ... etc etc etc ...
 < Editor exited. >
 < list saved. >

This looktrap creates a 'delayed effect'. Players get a little message seven seconds after they look at the
portrait.
> @set here=_details/painting;picture;portrait:A somber portrait in
 oils, depicting Baron Von Hoofenstaffen, former owner of this
 mansion:{null:{delay:7,{lit:{null:{tell:You're not quite sure: it
 seems, perhaps, that the eyes of the portrait are following your
 moves.}}}}}

Note: Many MUCKs have soft-coded 'look' commands that handle setting and removing looktraps, with
syntaxes such as look #add <detail> = <desc>. Type look #help to determine if such a system
is available on your MUCK.

2.3 Overview: Exits and Locks
An 'exit' is a link between two objects on a MUCK. When the two objects are rooms, the exit creates a virtual
'door' between them. When the destination is a program, the exit serves as a user-created command. Other
combinations are possible. Exits are also called 'actions'. Use of exits (as well as objects of other types) is
controlled by 'locks': an expression that evaluates as either 'true' (in which case the exit/object can be used) or
'false' (in which case it cannot). An exit is characterized by having a starting point (an object to which it is
'attached') and a destination point (an object to which it is 'linked').

Exits
Exits are created with either the @open or @action command. Both create an exit (an object with type flag
E), but the syntax and defaults are slightly different.

The basic syntax of the @open command is @open <exit name>. An exit created in this way will be
attached to (i.e., start from) the room in which one issues the command, and it will not be linked to anything
(it won't lead anywhere). The exit can be linked to another object on the MUCK with the @link command,
syntax @link <exit name> = <destination>. Since the destination will usually be somewhere
else on the MUCK, it will need to be specified by dbref rather than name.

Hooking up an exit in two steps...
> @open out
 Exit opened with number #1766.
> @find hallway
 Ansley Inn, Hallway(#198R)
 1 objects found.
 End of List
> @link out = #98
 Linked to Ansley Inn, Hallway(#98R)

Hooking up an exit in one step...
> @open out = #98
 Exit opened with #1766.
 Linked to Ansley Inn, Hallway(#198R)

An exit does not have to be attached to a room, however: an exit can be attached to anything except a
program or another exit. The @action command (abbreviated as @act) creates an action/exit attached to
an object specified at the time of creation:

> @act myplace = me
 Action created with number #1236 and attached.
> @link myplace = #1234
 Linked to Cashmere's Den(#1234).

Many MUCKs have a soft-coded @action command, that allows you to specify both the source and
destination at the time of the exit's creation:

> @act myplace = me,#1234
 Action created with number #1236 and attached.
 Trying to link...
 Linked ot Cashmere's Den(#1234)

The attachments and links of exits can be changed. To relink an exit, issue the @unlink command and then
@link the exit to the new destination.

> @unlink myplace
 Unlinked.
> @link myplace = #1768
 Linked to Cashmere's Bachelor Pad(#5784R).

To change an exit's point of attachment, use the @attach command, syntax @attach <exit> = <new
attachment point>

> @attach refrigerator = here
 Action re-attached.

(Obvious-exit programs generally list exits in the order of first-attached to last-attached, or the reverse.
Therefore, the order in which exits appear on the list can be changed by using @attach to re-attach exits to
the room: the exit will then become the last-attached exit, and move to either the first or last position in the
list.)

To reiterate, exits have a source (the object to which they are attached) and a destination (the object to which
they are linked). This means that they are one way. This point often causes confusion for new builders: in
order to create a 'door' between two rooms, one needs to create two exits, one leading in each direction. The
following example illustrates this: Cashmere's Bachelor Pad has dbref #5784. From the Bachelor
Pad, he will create a Bedroom, and then create two exits that make a door between the Pad and the Bedroom.

> @dig Cashmere's Bedroom
 Cashmere's Bedroom created with #5792.
 Parent set to BD's Environment Room(#4989RA).
> @open Bedroom = #5792
 Exit opened with number #5793.
> bedroom
 Cashmere's Bedroom(#5792)
> @open Out = #5784
 Exit opened with number #5784.
 Linked to Cashmere's Bachelor Pad(#5784R).

Exits linked to things move the the thing to the point of attachment when used (rather than moving the user to
the thing).

> @act getpup = me
 Action created with number #4684 and attached.
> @link getpup = $pup
 Linked to Squiggy(#128629XZ).
> getpup
 done
> i
 You are carrying:
 Squiggy(#128629XZ)
 You have 10664 wet cats.

Exits' names can include 'aliases', other names that can be used as the exit name. An existing exit can be

renamed to include aliases with the @name command, or the aliases can be specified at the time of the exit's
creation.

Renaming an existing exit...
> @name bedroom = Bedroom ;bedroom;bed;b
 Name set.

Creating an exit with aliases...
> @open Out <O>;out;ou;o
 Exit opened with number #5785.

Each string separated by a ; semi-colon is an alias for the exit. In the 'out' example above, typing either out
<o>, out, ou, or o would cause the player to use the out exit. Only the first name or alias is shown a list
of obvious exits. The above examples follow the common and useful convention of supplying a 'full' exit
name along with a simple abbreviation in the first alias.

> look
 Cashmere's Bachelor Pad(#5784R)
 Obvious Exits:
 Bedroom Out <O>

Locks:
Locks are expressions used to control the use of objects. The most common applications are to lock exits so
that only some people can use them, and to 'lock down' things that you need to leave lying about in rooms (a
sign or bulletin board, for example). Just what constitutes 'use' depends on the object type. To 'use' a thing
means to pick it up. To 'use' an exit means to pass through it to another room, or to use it as a command. To
'use' a room means to look at it.

If an object is locked it may be used if and only if the lock expression is 'true' for the player (or other object
type) attempting to use the object. 'True' in this context and in rather nontechnical terms means 'if the
triggering player/object is or has or is owned by a result of the lock expression'.

A simple example...

> @lock closet = me
 Locked.
> ex out = _/
 lok /_/lok:Kenya(#75PBJM1)

A lock expression is stored as data type 'lock' (see also Section 2.1.3), as indicated indicated by the prefix
lok, and meaning that the server will evaluate the expression for 'truth' in reference to the triggering player
(or other triggering object type). The lock in this example evaluates to 'database object #75'. If the player
or other object trying to use the exit 'is' #75 (that is, if it is Kenya), then the lock 'passes': Kenya will be able
to use the exit. Further, if the the triggering player/object 'has' Kenya, the lock would pass: if Kenya were
inside a vehicle object, the vehicle would be able to use the exit. And, if the triggering object 'is owned by'
Kenya, the lock would pass... for example, a puppet owned by Kenya would be able to use the exit. And (this
is the whole point of locks) only these objects would be able to use the exit.

Property values as well as dbrefs can serve as lock expressions. The syntax for locking an object to a

property value is @lock <object> = <property> : <value>

Only females can use this exit:
> @lock Powder Room = sex:female
 Locked.
> ex out = _/
 lok /_/lok:sex:female

If the triggering player/object 'has' the property value 'female' in her 'sex' property, the lock passes: in other
words, only females can use this exit. (When the system parameter lock_envcheck is tuned to 'yes', the
server searches rooms in the environment tree path for property matches on locks, as well as the triggering
player/object. In this case, if room #0 were set sex:female, the lock in the above example would always
pass.)

Wildcard characters (see Section 2.1.6) may be used in locks for property values.

This exit may be used by males and females, but not fluffs... lyve wyth yt.
> @lock Normal Folks Bar and Grill = sex:*ale
 Locked.

Lock expressions may contain or evaluate to multiple elements. The elements must be separated by an 'or'
operator (a | vertical bar) or by an 'and' operator (an & ampersand), and may optionally be preceded by a 'not'
operator (an ! exclamation point). Player names may be used, provided that they are preceded by an * asterix
pointer.

This exit may be used by either of two players, Passiflora or Kenya...
> @lock Den of Iniquity = *passiflora|*kenya
 Locked.

This exit may only be used by female staff members...
> @lock Wizards' GunPowder Room = ~staff:yes&sex:female
 Locked.

This exit may be used by anyone (or anything) who is not Stinker...
> @lock Jessy's House = !*stinker
 Locked.

This exit may only be used by someone who is Jessy and who is not Jessy. In other words, this lock alway
fails...
> @lock chair = *jessy&!*jessy
 Locked.

The operators have the following order of precedence:

1. ! not
2. | or
3. & and

The order of precedence can be over-ridden by enclosing sub-expressions within (parentheses).

This exit may be used by all females and all others who are not Stinker...
> @lock bar = !*stinker|sex:female
 Locked.

This exit may be used by all who are not female and not Stinker...
> @lock bar = !(*stinker|sex:female)
 Locked.

An object can be locked to a MUF program, in which case the program runs when someone uses or attempts
to use the object, and the lock passes if the program returns a true MUF value (that is, MUF's truth conditions
over-ride the truth conditions for locks). In MUF, a "" null string, the integer 0, the floating point value
0.00000, and the dbref for 'nothing', #-1, are false. If the MUF program returns any of these values, the
lock fails; if it returns any other value, the lock passes.

A lock cannot include MPI (or rather, will invariably fail if set to an MPI string), but an object can be locked
to a property value, and the property value on a relevant object can be set to an MPI string.

This exit may only be used on the stroke of midnight (or by someone who has figured out the lock and set his
'time' property to 00:00:00)...
> @lock time machine = time:00:00:00
 Locked.
> @set time machine = time:{time}
 Property set.

Locks may be removed with the @unlock command, syntax @unlock <object>'

2.3.1 Bogus Exits
It is (or was) a relatively common practice to create lookable details and realism-enhancing actions in rooms
by means of 'bogus exits'... exits that do not lead anywhere. The exits can be given a description, so that
doing look <exit> shows some detail of the room, and realistic messages can be put in the exit's
@fail/@ofail or @succ/@osucc.

> @open Grandma's Rocker;grandmas rocker;rocker;chair;sit
 Exit opened with number #5797.
> @link chair = $nothing Linked to gen-nothing(#114).
> @desc chair = An old, old rocker that has been in the family
 for generations.
 Description set.
> @succ chair = You take a seat in the old rocker.
 Message set.
> @osucc chair = takes a seat in the old rocker.
 Message set.

The above example creates a 'virtual chair'. Though it will not appear in the room's Contents list, people can
look at it, and can sit in it by typing sit (or any of its other aliases).

Bogus exits may have their place, but builders should be aware that there are other ways of accomplishing
the same goals without creating a separate exit for each item (an approach that quickly leads to dbase bloat).
Lookable details can created with 'looktraps' (see Section 2.2.2) and many events like the 'sit' message in the
above example can be handled by a single action (See Section 3.1.2, MPI Examples).

2.3.2 Unsecured Exits
An exit that is not linked to anything and not thoroughly locked is unsecure, in that its ownership transfers to
anyone who uses the exit and anyone can link it. This creates a minor security risk: someone could take
control of an exit attached to one of your rooms and make it do something annoying or harmful. So, always
secure exits. An exit can be secured by locking it to a condition that always fails — such as me&!me — or
by linking it to something. All established MUCKs provide a 'do-nothing' program, a program that produces
no result, and thus serves as a convenient linking point for exits. Usually such a program is given the
registered name $nothing or $do-nothing.

> @link sit = $nothing
 Linked to gen-nothing.muf(#363FLM2).

2.3.3 Exit Priorities
In our discussion of the environment tree, it was noted that the server searches up the environment tree for
commands matching users' input. If more than one command with the same name is found, the server must
resolve which command to execute. This is determined by the 'priority' of the exits, and the order of the
search path. Both are affected by the system parameter compatible_priorities.

Wizards can set Mucker bits on exits as well as on programs and players. An exit with a higher Mucker bit
runs at higher priority than an exit with a lower Mucker bit, or one with no Mucker bit.

For example, suppose a MUCK has a global exit named 'bank' linked to a program that gives players 100
pennies, and a player has an exit in his room named 'bank' linked to a program that gives players 500 pennies.
If neither exit has a Mucker bit set, both are considered 'Priority 0' (zero). The first exit found in the search
path would be executed: a player standing in the room with the 'local' exit would receive 500 pennies;
elsewhere, the global 'bank' command would run, and the player would receive 100 pennies.

However, if a wizard set the global 'bank' exit M1, the global exit would now have higher priority. Even in
the room with the 'local' exit, typing 'bank' would execute the global exit, and players would receive 100
pennies.

As indicated, if there are two exits with the same name and the same priority, the server executes the first exit
found. But the order of the search path changes depending on whether the system parameter
compatible_priorities is set to 'no' or 'yes'. (Wizards may set system parameters with the @tune
command.)

If compatible_priorities is set to 'no', all non-prioritied exits (i.e., exits with no Mucker bit set) are
considered 'priority 0', and the server uses the following search order:

1. On the room the player is located in
2. On objects the player's inventory
3. On objects in the room's inventory
4. On the player
5. Environment rooms containing the present room, beginning with the 'closest' room... the room

furthest from room #0
6. Room #0
7. The server

If compatible_priorities is set to 'yes', all non-prioritied exits are considered 'priority 1', and the
server uses the following search order:

1. On the room the player is located in
2. On the player
3. Environment rooms containing the present room, beginning with the 'closest' room... the room

furthest from room #0
4. Room #0
5. Objects in the player's inventory
6. Objects in the room's inventory
7. The server

In our example, the wizard had just set the global 'bank' exit M1, so it had a higher priority than the local M0
exit. If the wizard then did @tune compatible_priorities = yes, both exits would now be
considered 'priority 1': the global is priority 1 because it is set M1, and the local is considered priority 1
because the system parameter is set to run all unprioritied exits at priority 1. The search order for players and
inventories has changed, but in both cases the local room is checked before the global parent #0. So, now
the local exit would run when player's type 'bank' in the room with the local exit. If the wizard then set the
global exit M2, it would again have higher priority than the local exit, and would run regardless of where a
player is standing when typing 'bank'.

If you have difficulty getting a local or personal exit to run in preference to a global of the same name,
contact a wizard and discuss modifying priorities, either by raising your exit's priority, or by changing the
system parameter.

2.4 User-Created Commands
We have used the term 'user-created commands' throughout the manual to indicate 'add-on' commands
created by the wizards or players of a MUCK. Most other issues affecting such commands — the command
search path, exit priorities, locks, etc. — have been discussed at various points above.

Because efficient and flexible commands can easily be added to a MUCK, the platform is highly
customizable. In general, this is a Really Good Thing: MUCKs can be continually improved and tailored to
their population's needs, without hacking the server code, which often results in bugs and invariably results in
innumerable versions and patch levels of the program.

On the downside, you can't assume that something you've learned on one MUCK will work exactly the same
way on a different MUCK. And, The MUCK Manual cannot provide a complete reference for any given
MUCK.

Most MUCKs do share a core set of standard programs, libraries, and commands, distrubuted as the 'standard
database'. Discussion of the standard commands is provided in Section 2.7, User-Created Command
Reference. The programming libaries are discussed in Section 3.2.6, MUF Library Reference.

2.5 Flag Reference
A (Abode, Abate, Autostart)

On a Room: Anyone can set their home or the home of objects to the room.

On an Exit: The exit is lower priority than an exit without the Abate flag. If
compatible_priorties is tuned to 'no', an abated exit's priority is 'less than 0'; If
compatible_priorites is tuned to 'yes', an abated exit's priority is 'less than 1'.

On a Program: The program will automatically be loaded into memory and executed when the MUCK
starts or restarts.

B (Builder, Bound, Block)
On a Player: Player can create and modify objects with the @create, @dig, @link, and
@open. On most MUCKs, players start off with a B flag. A B flag on players is also called a 'builder
bit'.

On a Room: Personal exits (exits attached to a player) cannot be used in the room.

On a Program: Any functions within the program run in preempt mode. If the program set B is called
by another program, multi-tasking status returns to that of the calling program when execution exits
from the called program.

(Only wizards can set and remove B flags.)

C (Chown_OK, Color)
On any object except Players: Anyone can take control of the object with the @chown command
('change ownership').

On a Player: On MUCK versions 5.x and lower, no effect. on 6.x, MUCK output will be formatted with
ASCII color, provided that the player's client handles color and that the text has been formatted with
color.

D (Dark, Debug)
On a Room: Wizards and the owner of the room see all objects normally, but other players see only
objects they own. If no objects would be seen, a 'Contents' list is not appended to the description of the
room.

On a Thing: The object does not appear in the room's 'Contents' list.

On a Player: The player does not appear in the 'Contents' list of rooms or in the WHO list. Only wizards
may set players dark.

On a Program: A stack trace of internal program operations is printed out to anyone who uses the
program.

E (Exit)
Type Flag: The object is an Exit/Action.

F (MUCK Forth Program)
Type Flag: The object is a program.

H (Haven, HardUID)
On a Room: The kill command may not be used in that room.

On a Player: The player cannot be paged.

On a Program: The program runs with the permissions of the owner of the trigger, rather than with the
permissions of the user of the program. When this is set in conjunction with the Sticky (Setuid,
below) flag on a program, and the program is owned by a wizard, then it will run with the effective
mucker level and permissions of the calling program. If the caller was not a program, or the current
program is not owned by a wizard, then it runs with Setuid.

J (Jump_OK)
On a Room: Players can teleport to and from the room (assuming other conditions for teleporting are
met). If the MUCK is configured with secure_teleporting, J indicates that exits attached to
players and objects can be used to leave to leave the room, and !J indicates that they cannot.

On a Thing: The object can be moved by a program running at any Mucker level.

On a Player: The player can teleport to and from rooms (assuming other conditions for teleporting are
met).

K (Kill_OK)
On a Player: The player can be killed with the kill command. A player who is 'killed' is simply sent
home.

L (Link_OK)
On a Room: Anyone can link exits to the room.

On a Program: The program can be called by any program, and can be triggered by actions and
propqueues not owned by the owner of the program.

M1 (Mucker Level 1)
(See also Section 3.2.1)

On a Player: The player is an 'apprentice' Mucker. He can use the MUF editor and create M1 programs.

On an Exit: The exit runs at priority 1.

On a Program: The program runs with Mucker level 1 permissions. The program cannot get

information about or send information to any object that is not in the same room. Some MUF primitives
cannot be used. Program output to anyone except the triggering player is prepended with the triggering
player's name. Instruction count is limited to about 20,000 instructions. The program follows
permissions for protected props (see Section 2.1.1).

M2 (Mucker Level 2)
(See also Section 3.2.1)

On a Player: The player is a 'journeyman' Mucker. She can use the MUF editor and create M2 programs.
She can set the Mucker level of any program she controls to M1 or M2.

On an Exit: The exit runs at priority 2.

On a Program: The program runs with Mucker level 2 permissions. Some MUF primitives cannot be
used. Instruction count is limited to about 80,000 instructions. The program follows permissions for
protected props (see Section 2.1.1).

M3 (Mucker Level 3)
(See also Section 3.2.1)

On a Player: The player is a 'master' Mucker. He can use the MUF editor and create M3 programs. He
can set the Mucker level of any program he controls to M1, M2, or M3.

On an Exit: The exit runs at priority 3.

On a Program: The program runs with Mucker level 3 permissions. Almost all MUF primitives can be
used. There is no absolute limit to instruction count, unless the program is running in PREEMPT mode.
The program may over-ride the permissions for protected props.

P (Player)
Type Flag: The object is a Player.

Q (Quell)
On a Player or Room: The Quell flag cancels the effects of a wizard flag. A wizard player set Q is
effectively a normal player. A Q flag on a wizbitted room will cancel the realms-wiz powers of the
room's owner.

R (Room)
Type Flag: The object is a Room.

S (Silent, Sticky, SetUID)
On a Thing: The object will return to its home when dropped.

On a Room: The room's drop-to is delayed until all players have left the room.

On a Player: The player will not see dbrefs on things she owns, and will not see objects in a Dark
room. Control is unchanged however.

On a Program: The program runs with the permissions of the owner of the program, and not those of
the user.

W (Wizard)
On a Room: The room's owner has Realms Wiz powers in that room and any rooms parented to it,
provided that the MUCK's realms_control parameter is set to 'yes'.

On an Exit: The exit runs at priority 4.

On a Player: The player is a wizard. Wizards have control over all objects in the database (although
with some restrictions in their control over God and other wizards). Wizards can use restricted, wiz-
only commands, and can set programs, rooms, and things W and B. Some wizard powers are enabled or
disabled by the system parameter god_priv.

On a Program: The program is effectively Mucker level 4. All MUF primitives may be used, and do not
have a maximum instruction count unless the program is running in preempt mode.

X (Xforcicble)
On a Player or Thing: The player or thing may be forced by a player (or other object type) to which it
is force_locked.

V (Vehicle)
On a Thing: The object is a vehicle.

On a Room: Vehicles may not enter the room.

On an Exit: Vehicles may not use the exit.

Z (Zombie)
On a Thing: The object is a Zombie: all output the Zombie sees or hears will be related to the
controlling player.

On a Room: Zombies may not enter the room or be forced in the room.

On an Exit: Zombies may not use the exit.

2.6 Server Command Reference
@ACTION
 | @ACT
@action <name>=<source> [=<regname>]

Creates a new action and attaches it to the thing, room, or player specified. If a <regname> is specified,
then the _reg/<regname> property on the player is set to the dbref of the new object. This lets players
refer to the object as $<regname> (eg: $mybutton) in @locks, @sets, etc. You may only attach
actions you control to things you control. Creating an action costs 1 penny. The action can then be linked
with the command @link.

@ARMEGEDDON

@armedeggon

Shuts down the MUCK without first doing a save. The primary purpose is to avoid over-writing the saved
database if it becomes apparent the current database is corrupt, or when someone (usually a wizard) has done
something quite stupid, destroying a large amount of objects or data. (Wizard only)

@ATTACH
 | @ATT
@attach <action> = <new source>

Removes the action from where it was and attaches it to the new source. You must control the action in
question.

@BOOT

@boot <player>

Disconnects a player from the game. If a player is connected more than once it affects the most recent
connection. (Wizard only)

@CHOWN

@chown <object> [=<player>]

Changes the ownership of <object> to <player>, or if no player is given, to yourself. If the MUCK is
compiled with player_chown, all players are allowed to take possession of objects, rooms, and actions,
provided the Chown_OK flag is set, with the following exception: mortals may @chown an exit if they own
the object it is attached to, or an object it is linked to. Mortals cannot take ownership of a room unless they
are standing in it, and may not take ownership of an object unless they are holding it. Wizards have absolute
power over all ownership.

@CHOWN_LOCK
 | @CHLOCK
@chown_lock <object> = <lock expression>

Locks <object> such that it may only be chowned by players for whom <lock expression> is true.
The object's Chown_OK flag must be set as well. Wizards may chown any item, regardless of its
chown_lock.

@CONLOCK

@conlock <object> = <lock expression>

Locks <object> such that only those for whom <lock expression> is true may place things in or
remove things from <object>.

@CONTENTS

@contents [<object>] [= <flags/types> = [<output type>]]

Searches the given object for items & exits that match the given flag string.

For an explanation of the flags/types modifiers and the output types, see the help entry for @find.

Example: @contents here = DE = owner will list all Dark Exits attached to your current location,
giving the owner of each one. See also @find, @owned, @entrances

@CREATE

@create <object> [=<cost> [=<regname>]]

Creates a new object and places it in your inventory. This costs at least ten pennies. If <cost> is specified,
you are charged that many pennies, and in return, the object is endowed with a value according to the
formula: ((cost / 5) - 1). Usually the maximum value of an object is 100 pennies, which would cost 505
pennies to create. If a <regname> is specified, then the _reg/<regname> property on the player is set to
the dbref of the new object. This lets players refer to the object as $<regname> (eg: $mybutton) in
@locks, @sets, etc. Only a builder may use this command.

@CREDITS

@credits

Displays a screen listing the names of people and places who have contributed to TinyMUCK's development.

@DESCRIBE
 | @DESC
@describe <object> [=<text>]

Sets the description field of <object> to <text>. If <text> is not specified, the description field is
cleared. This is the same as @set <object> = _/de:<text>. A description is what is seen when a
player looks at something.

@DIG

@dig <room> [=<parent> [=<regname>]]

Creates a new room, sets its parent, and gives it a personal registered name. If no parent is given, it defaults

to the first Abode room down the environment tree from the current room. If it fails to find one, it sets the
parent to the global environment, which is typically room #0. If no regname is given, then it doesn't register
the object. If one is given, then the object's dbref is recorded in the player's _reg/<regname> property, so
that they can refer to the object later as $<regname>. Digging a room costs 10 pennies, and you must be
able to link to the parent room if specified. Only a builder may use this command.

DROP

drop <object>

Drops the <object> if you are holding it. It moves the object to the room you are in, unless its Sticky flag
is set (in which case the object will go to its home), or the room has a drop-to (in which case the object will
go to the room's drop-to). Programs are much like objects but are not affected by room droptos or Sticky
flags. A 'drop' message can be set, which will be shown to the player dropping the object, and an 'odrop',
which will be shown to the other players in the room. See @odrop.

@DROP

@drop <object> [=<text>]

Sets the drop field of <object> to <text>. If <text> is not specified, the drop field is cleared. The drop
message on an object is displayed when you drop it. On an exit, it is displayed upon entering the destination
room. On a player it is displayed to whoever kills him or her. On a room, it is displayed when an object is
dropped there. This is the same as @set <object> = _/dr:<text>.

@DUMP

@dump [filename]

Saves the database from memory to disk. Automatically occurs every three hours, and when @shutdown is
used. On a large MUCK, this can take a significant amount of time (ten or more minutes). If a filename is
given, it will save the database to that file, and save any subsequent dumps to it as well. (Wizard only)

@EDIT

@edit <program>

Searches for a program and if a match is found, puts the player into edit mode. Programs must be created
with @program.

@ENTRANCES
 | @ENT
@entrances [<object>] [= <flags/types> = [<output type>]]

Searches through the database for items that you control linked to <object>.

For an explanation of the flags/types modifiers and the output types, see the help entry for @find.

Example: @entrances here = ED = location will list all Dark Exits that are linked to your
current location, giving the location of each one. See also @find, @owned, @contents.

EXAMINE
 | EX
examine <object> [=propdir]

If you control <object>, examine will give you a complete breakdown of all fields, flags, etc., that are
associated with the object. If the optional propdir field is supplied, then it instead lists out all the properties
directly under that propdir. To list the base propdir of an object, use ex <object>=/. Program-executing
fields are displayed as their true text, rather than executing the program in question. If you do not control
<object>, however, it prints the owner of the object in question, and, again, displays the true text of the
description.

@FAIL

@fail <object> [=<message>]

<Object> can be a thing, player, exit, or room, specified as <name> or #<number> or 'me' or 'here'. Sets
the fail message for <object>. The message is displayed when a player fails to use <object>. Without a
message argument, it clears the message. This is the same as: @set <object>=_/fl:[text]. See also
@ofail and @desc.

@FIND

@find [<name>] [= <flags/types> = [<output type>]]

Searches through the database for items that you control matching <name>. Players control only objects
they own; wizards control all objects, so @find searches the entire database when they use it.

Flags or types can be specified, to specify that you only want to list objects that have that flag set, or that are
of that type. You can also specify to list objects that are not of that specific type, or that do not have that flag.
(A ! not operator before the modifier indicates that it is to be inverted.)

The flags that you can specify are: Abode, Builder/Block, Chown_OK, Dark/Debug,
Haven, Interactive, Jump_OK, Kill_OK, Link_OK, Mucker, Quell,
Sticky/Silent, Vehicle, Wizard, Xforcible, and Zombie (use the initial capitalized letter
only).

You can also specify Mucker Levels by the level number: 1, 2, 3, or 4.

The types that you can specify are: Exit, muF program, Garbage, Player, Room, and Thing
(use the capitalized letter only).

There are a few other modifiers you can specify:

 Unlinked
Specifies that you want to list only unlinked objects.

@
Specifies to list objects longer than about 90 days old.

~size
Will match all objs whose current memory usage is greater than or equal to size bytes. This must be
the last modifier in the list of modifiers.

^size
Will match all objs whose total memory usage, when fully loaded, is greater than size bytes. To do
this, it loads the entire object into memory from disk. This modifier is only available to wizards. For
regular players, this acts like ~size. This must be the last modifier in the list of modifiers.

Again, use only the initial capital letter for Unlinked.

The output types that can be given are owners, links, size, count, & location. For output types, use the whole
name rather than just the initial letter. You can use only one at a time.

owners
Lists who owns each object.

links
Shows what each object is linked to, or *UNLINKED*, or, for exits
linked to multiple things, *METALINK*

size
Displays how much memory is currently being used by an object. If this option is used with the ^
modifier, (see above) then this will display the true full size of the object, and not just how much is
currently being used.

count
Causes nothing to be shown but how many objects the @find, etc would match. That is, it doesn't
display any of the matched objects.

location
shows where the object is located.

The rules for matching on names are as follows:

• Individual words can be matched as {word1|word2|...}
• Individual characters can be matched as [abc...]
• A ? question mark matches any single character.
• An * asterix matches any number of characters, including none.
• Any of these special charcters can be matched by putting a \ backslash before it.

Examples:

@find north = EU = location
Finds all of your unlinked exits named 'north' and prints them along with their locations.

@find {big|little} = R!L
Finds all your rooms whose names contain 'big' or 'little' and are not Link_OK.

@find w[ei]ll
Find everything you control whose name contains 'will' or 'well'.

@find = E =links
Will list all exits that you control, and display where they are linked to.

@find button == locations
Will list all objects you control with 'button' in the name, and it will display where thay are located.

@find = ~2000 = size

Will list all your objects whose current memory usage is 2000 bytes or more, and it will display their size.

@find = ^2000 = size
Will, for a wizard, find all objects in the database that are 2000 or more bytes in total size, when fully loaded,
and it will show their sizes. Note that this will load all of each object into memory to make the size
determination. On some systems this can take a while, and on all systems this is an abuse to the diskbasing
cache. (Wizard only)

See also @owned, @entrances,and @contents

@FORCE

@force <player>=<command>

Causes the game to process <command> as if typed by <player>. With the compile option god_priv,
God cannot be forced by his or her sub-wizards.

@FORCE_LOCK
 | @FLOCK
@force_lock <object> = <lock expression>

Locks <object> such that it may only be @forced by players or other object types for whom <lock
expression> is true, provided that the XForcible flag is set. Wizards may force any object, except
God.

GET

get <object>

Attempts to pick up <object>. The lock on <object> is checked for a success (true), and the normal
path of success/fail is then taken. On success the object is placed in your inventory.

Another variation on this is get <container>=<object>, which attempts to get <object> from the
given container. The _/clk lock property on <container> is tested, and if it is true, when it checks to
see if the standard _/lok lock property on <object> tests true. If both locks pass, then <object> is
moved into the player's inventory. If there is no _/clk property on <container> it defaults to failing.
The _/lok property, on <object>, on the other hand, defaults to passing. @succ/@fail messages are
not displayed, when fetching something from a container.

GOTO
 | GO
go[to] <direction>; go[to] home

Goes in the specified direction. go home returns you to your starting location. The word goto or go may
be (and usually is) omitted. Move is the same as go.

GIVE

give <player> = <# pennies>

Gives <# pennies> to <player>. For mortals, <# pennies> must be a positive number less than
or equal to the number of pennies they have. <# pennies> is subtracted from the giving player's
inventory. Wizards may give any amount from positive max_integer to negative max_integer.
Giving does not affect the wizard's own inventory of pennies.

GRIPE

gripe <message>

Sends <message> to the system maintainer. Gripes are logged for later reference; also, if the system
maintainer is connected he will receive the gripe real-time when the gripe is made.

HELP

help <topic>

Shows an online help document for <topic>. Help with no argument shows a brief list of basic
commands. Help help shows a list of index topics.

HOME

home

Sends you home, no matter where you are. You retain your pennies, but any objects you are carrying leave
your inventory and return to their own homes.

@IDESCRIBE
 | @IDESC
@idescribe <object> [=<text>]

Sets the idescription field of <object> to <text>. If <text> is not specified, the description field
is cleared. This is the same as @set <object>=_/ide:<text>. An idescription is what is seen on the
inside of a vehicle, when a player inside it looks around.

INFORMATION
 | INFO
information <topic>

Shows an online document about <topic>. If no topic is supplied, a list of available topics will be shown.

INVENTORY
 | INV | I
inventory

Lists what you are carrying. This can be abbreviated to inv or i.

KILL

kill <player> [=<cost>]

A successful kill sends the player home, sends all objects in the player's inventory to their respective homes.
The probability of killing the player is <cost> percent. Spending 100 pennies always works except against
Wizards who cannot be killed. Players cannot be killed in rooms which have the Haven flag set. On systems
where the Kill_OK flag is used, you cannot kill someone unless both you and they are set Kill_OK.

@KILL

@kill <processid|playername|programdbref|"all">

If passed a processid (a number without an # octothorpe preceeding it), it will kill the given process, if the
player controls it. If passed a player name, it will kill all the processes controlled by that player. If passed a
program dbref, it will kill all processes that that program is running in. If the argument passed is all, and
the player is a wizard, it will kill all processes on the timequeue.

LEAVE

leave

Leave the vehicle you are currently inside.

@LINK

@link <object1>=<object2> [; <object3>; ... <objectn>].

Links <object1> to <object2>, provided you control <object1>, and <object2> is either
controlled by you or linkable. Actions may be linked to more than one thing, specified in a list separated by
semi-colons.

@LIST

@list <program> [=[line1] [-] [line2]].

Lists lines in a program, provided you control it or it is Link_OK. Zero, one, or two line numbers may be
specified, denoting the range of lines to list. If no lines are given, the entire program is listed.

@LOCK

@lock <object> = <key>

Locks <object> to a specific key(s). <Object> can be specified as <name> or #<number>, or as 'me'
or 'here'. Boolean expressions are allowed, using & (and), | (or), ! (not), and parentheses ('(' and ')') for
grouping. To lock to a player, prefix their name with '*' (ex. *Igor). A key may be a player, an object, or
'property:value'.

LOOK

look <object>

Looks around at the current room, or at <object> if specified. For players, displays their description and
inventory, for things, their description, and for rooms, their name, description, succ/fail message, and
contents. Also triggers osucc/ofail messages on rooms. Programs are triggered accordingly on desc/succ/fail
fields.

MAN

man [<subject>]

Displays the programmer's manual or a quick reference for MUF.

MOVE
 See GOTO.

MPI

mpi [<subject>]

Displays the programmer's manual or a quick reference for MPI.

@NAME

@name <object>=<name> [<password>]

Sets the name field of <object> to <name>. <Name> cannot be empty; a null name is illegal.
<Password> must be supplied to rename a player. Wizards can rename any player but still must include
the password.

@NEWPASSWORD

@newpassword <player> [=<password>]

Changes <player>'s password, informing <player> that you changed it. Must be typed in full. If
god_priv was defined, nobody can change God's password. (Wizard only)

NEWS

news [<topic>]

Displays the current news file for the game. Must be typed in full. If a topic is given, then it displays the
information on that specific topic.

@ODROP

@odrop <object> [=<text>]

Sets the odrop field of <object> to <text>. If <text> is not specified, the odrop field is cleared.
Odrop on an object is displayed prefixed by the player's name when s/he drops that object. On an exit, it is
displayed upon a player's arrival to the destination room (or the location of the destination player). On a
player, it is displayed after the 'name killed victim!' message. On a room, it is displayed when an object is
dropped there, prefixed by the object's name. This is the same as: @set <object>=_/odr:<text>. See
also @drop.

@OECHO

@oecho <vehicle object> = <echo prepend string>

Sets a string to prepend to messages relayed to the interior of a vehicle in the vehicle's _/oecho property.
By default, the name of the vehicle object, followed by a > greater-than character is used to prepend such
messages.

@OFAIL

@ofail <object> [=<message>]

The @ofail message, prefixed by the player's name, is shown to others when the player fails to use
<object>. Without a message argument, it clears the message. <object> can be specified as <name>
or #<number>, or as 'me' or 'here'. This is the same as: @set <object>=_/ofl:<text>. See also
@fail.

@OPEN

@open <exit> [=<object> [; <object2>; ... <objectn>] [=<regname>]]

Opens an exit in the current room, optionally attempting to link it simultaneously. If a <regname> is
specified, then the _reg/<regname> property on the player is set to the dbref of the new object. This lets
players refer to the object as $<regname> (eg: $mybutton) in @locks, @sets, etc. Opening an exit
costs a penny, and an extra penny to link it, and you must control the room where it is being opened.

OUTPUTPREFIX

OUTPUTPREFIX [string]

Must be in all capitals, and typed in full. Prints the given line before the output of every command, setting
them apart from other messages.

OUTPUTSUFFIX

OUTPUTSUFFIX [string]

Must be in all capitals, and typed in full. Prints the given line after the output of every command, setting
them apart from other messages.

@OSUCCESS
 | @OSUCC
@osuccess <object> [=<message>]

The @osuccess message, prefixed by the player's name, is shown to others when the player successfully
uses <object>. Without a message argument, it clears the @osuccess message. It can be abbreviated
@osucc. <Object> can be specified as <name> or #<number>, or as 'me' or 'here'. This is the same as
@set <object>=_/osc:<text>. See also @success.

@OWNED

@owned <name> [= <flags/types> = [<output type>]]

Searches through the database for items that <name> controls.

For an explanation of the flags/types modifiers and the output types, see the entry for @find.

Example: @owned Revar=F!L3=location will list all Mucker Level 3 (3) programs (F) owned by
Revar, that are not set Link_OK (!L), and it will show the location of each one.

Note that only wizards can do an @owned on other people. See also @entrances, @find, and

PAGE

page <player> [= <message>]

This tells a player that you are looking for them. They will get a message in the form of 'You sense
<pager> is looking for you in <location>.' A <message> is optional, and is delivered in the form of
<pager> pages: <message>. Your location is not revealed in message pages. If a player is set
Haven, you cannot page them, and they will not be notified that you tried. You will instead be told, 'That
player does not wish to be disturbed.' (Note: Most systems use a user-created program with a global page
action, which takes the place of the built-in page command, and has more features.)

@PASSWORD

@password <old password> = <new password>

This changes your password.

@PCREATE

@pcreate <player> = <password>

This command creates a new player. It may only be used if registration is enabled. (Wizard only)

@PECHO

@pecho <puppet object> = <echo prepend string>

Sets a string to prepend to messages relayed from a puppet in the puppet's _/pecho property. By default,
the name of the puppet object, followed by a > greater than character is used to prepend such messages.

POSE

pose <message> or :<message>

Causes <message> to be displayed to the room, prepended by your name.

@PROGRAM

@program <program>

Create a new program, or enter edit mode on an existing one. See also @edit.

@PROPSET

@propset <object> = <data type> : <property> : <value>

Sets <object's> <property> to <value>, with <value> stored as data type <data type>. You
must control <object>.

@PS

@ps

Lists the status of the currently running MUF program processes. This lists all processes for a Wizard. Non-
Wizards only see the muf processes that they can @kill. See @kill.

PUT

server: put <object>
user-created: put <object> in <container>

The server version of put is an alias of drop. The standard start-up database supplies a user created
command that moves <object> into <container>, provided that you are holding both <object> and
<container> and that <container> is not @conlocked against you.

QUIT

QUIT

Must be in all capitals, and typed in full. Logs out of your character and leaves the game. Your character

remains at the location you are in when you log out, although it might be moved elsewhere while you are
'asleep.'

READ

read [<object>]

An alias for look. The standard start-up dbase supplies a bulletin board program for which read is a
command to read bulletins.

@RECYCLE
 | @REC
@recycle <object>

Destroy an object and remove all references to it within the database. The object is then added to a free list,
and newly created objects are assigned from the pool of recycled objects first. You must own the object being
recycled: even wizards must use the @chown command to recycle someone else's belongings.

@RESTRICT

@restrict <on|off>

Turning restriction on allows only wizards to log onto the MUCK. Turning it off returns to unrestricted
access.

ROB

rob <player>

Attempts to steal one penny from <player>. The only thing you can steal are pennies.

SAY

say <message> or "<message>

Says <message> out loud. See also pose, page, and whisper.

SCORE

score

Displays how many pennies you are carrying.

@SET

@set <object> = [!] <flag> -or-
@set <object> = <property> : [<string>] -or-

@set <object> = :

@set does one of three things on TinyMUCK: it can modify flags, add properties to an object, or remove
properties from an object.

Using the first format, you may set flags, which are: Wizard, Link_OK, Dark [Debug], Filter,
Sticky [SetUID], Jump_OK, Builder [Bound], Quell, Chown_OK, Havan
[HardUID], Abode [Autostart], Vehicle, Zombie, or Mucker. You can also set the
Mucker (or Priority) Level of an object by using 0, 1, 2, or 3 as the flag name. An optional flag which
may or may not be on a given site is Kill_OK.

The second format sets <property> on <object> to <string>, or if <string> is not given,
removes <property>.

The third format removes all properties from an object.

@SHUTDOWN

@shutdown

Shuts down the game. Must be typed in full. (Wizard only)

@STATS

@stats [<player>]

For mortal players, returns the highest number in the database, which includes garbage that has been
generated with @recycle. For Wizards, gives this number as well as a breakdown of each type of object:
rooms, exits, things, programs, players, and garbage. Wizards may also specify <player> which returns a
similar display limited to the possessions of <player>.

@SUCCESS
 | @SUCC
@success <object> [=<message>]

Sets the success message for <object>. The message is displayed when a player successfully uses
<object>. Without a message argument, it clears the message. It can be abbreviated @succ. <object>
can be specified as <name> or #<number>, or as 'me' or 'here'. This is the same as @set
<object>=_/dr:<text>. See also @osuccess.

@SWEEP

@sweep [<object>]

Returns a list of objects that are listening to <object>. <Object> defaults to 'here'.

TAKE
 See GET.

@TELEPORT
 | @TEL
@teleport <arg1> [=<destination>]

Moves <arg1> to <destination>, if <destination> is not given, moves you to <arg1>.
Wizards may teleport anything to anywhere, provided it makes sense, and mortals are allowed to do two
things: teleport rooms to change their parent fields, and the may teleport things to a room they can link to,
provided they control either the thing or its location.

THROW

server: put <object>
user-created: throw <object> to <player>

The server version of throw is an alias of drop. Most MUCKs have a user-created program that moves
<object> to <player>, announcing the move, provided that you are holding <object> and that you,
<object>, and <player> are each configured in such a way as to allow the throw.

@TOAD

@toad <player1> [= <player2>]

Turns <player1> into a slimy toad, destroying their character. All possessions of <player1> are
@chowned to <player2>. If no owning player is specified, objects will be @chowned to the wizard who
is executing @toad. Must be typed in full. (Wizard only)

@TRACE

@trace <object> [=<depth>]

Starts with <object> and traces all location fields, until the global-environment room is reached or the
optional <depth> is specified. This is generally useful for finding which rooms are parents in your
heirarchy. If you cannot link to a particular location its name is replaced by **MISSING**.

@UNCOMPILE

@uncompile <program>

Uncompiles all programs in the database. (Wizard only)

@UNLINK

@unlink <exit>; @unlink here

Removes the link on the exit in the specified direction, or removes the drop-to on the room. Unlinked exits
may be picked up and dropped elsewhere. Be careful, anyone can relink an unlinked exit, becoming its new
owner (but you will be reimbursed your 1 penny). See @link.

@UNLOCK

@unlock <object>

Removes the lock on <object>. See @lock.

@USAGE

@usage

Displays system resource usage stats for the muck server process. (Wizard only)

@WALL

@wall <message>

Only wizards may use this command. Shouts something to every player connected. Must be typed in full.

WHISPER

whisper <player>=<message>

Whispers the message to the named person, if they are in the same room as you. No one else can see the
message. Wizards can whisper *<player>=<message> to whisper to players in other rooms. (Note:
Most systems use a user-created program in place of the built in whisper command. These programs
generally provide many more useful features.)

WHO

WHO [<player>]

Must be in all capitals, and typed in full. Lists the name of every player currently logged in, and how long
they have been inactive. If given a player name, it displays only the matching names and idle times. By
typing WHO* wizards also get a display of the host the player is connected from.

2.7 User-Created Command Reference
This section provides a quick reference for user-created commands supplied in the standard start-up database
(std-db.db). On many MUCKS, several or many of these programs will have been modified or replaced with
versions that are either more recent or more specifically attuned to the needs of the MUCK. So syntax may
very slightly, but you can reasonably expect to find a command that offers similar functionality. An
established MUCK will have many other user-created commands besides these.

Most user-created commands follow the convention of a #help argument: typing the command name
followed by #help will display a help screen.

3WHO

3who

Displays the names, online times, and idle times of all players online, formatted to three columns. A less
spammy alternative to WHO.

@ARCHIVE
 | @ARC
@archive <object>

The archive command essentially 'decompiles' an object, outputting all commands and settings that would be
necessary to recreate the object. The output is simply printed to your screen: it is not saved in some archive
on the MUCK. In order to use an @archive dump, you will need to capture the output, by cutting and
pasting, logging with a client, or some other means, and save it to a file on your own computer.

The archived object can then be recreated by quoting or pasting the file into a MUCK window. The most
common uses of archive dumps are porting objects between MUCKs or keeping a back-up copy offline to
safeguard against loss or corruption of the MUCK's dbase.

The @archive command is recursive: <object> and anything contained by <object> will be archived.
Thus, for example, an entire area can be dumped to an archive file by archiving the parent room: all rooms,
exits, things, and programs in the area that are owned by the archiving player will become part of the dump.

For non-wizzes, @ wiz props will not be part of the dump. Restricted props (props that begin with a ~ tilde)
will be included in the dump, but will not be recreated when the archive is quoted, unless the player is a
wizard at that time. Also, exits leading to and from archived rooms or areas cannot be linked when the
archive is quoted (though exits within an archived area can). It is normal to see various 'Huh?' and
'Permission denied' messages when recreating an object from an archive dump.

MPI and MUF that contains hard-coded dbrefs create another portability concern. A dbref, naturally, refers to
a specific object on a specific MUCK. The corresponding object on a different MUCK will have a different
dbref. To some extent, this problem can be reduced by using pointers and registered names when building,
describing, coding, etc. For example, if you (player #123) used a personal version of {look-notify} ...

 {null:{tell:[{name,me} looked at you.],#123}}

... the code would result in a 'Permission denied' error if you recreated yourself on another MUCK via
an archive dump. This could be avoided with either of the following versions:

 {null:{tell:[{name,me} looked at you.],this}}
 {null:{tell:[{name,me} looked at you.],*Jessy}}

Recreating objects from archive dumps usually sets temporary registered name values on your character, in
propdir _reg/tmp. It is not necessary to do anything with this directory, but to conserve dbase space, you
might want to remove it after doing a large dump: @set me = _reg/tmp:

@BANSITE

@bansite sitename (Prevents logins from the given site)
@bansite !sitename (Re-allows logins from the given site)
@bansite #list (Lists all the sites that are banned)

This command prevents anyone from logging onto the MUCK from a banned site. Along with @toad, it is
used to prevent problematic players from connecting to the MUCK. For example, a player might be toaded
for violations of the MUCK's acceptable use policy, but continue to log on via guest and alternate characters.
@Bansite prevents this by locking out connections from a given site regardless of the character.

Sites may be specified by host name or numeric address. Wildcards may be used in the site name and
address. Wildcards are frequently necessary, since many ISP's use dynamic host names for customer's
connected via SLIP or PPP connections. For example, an examination of a problematic player's @/
directory might show that the last host used was:

 user12.vnn.luser.com

Doing @bansite user12.vnn.luser.com would be ineffective: in all likelihood, the first one or
two sections of the hostname would different the next time the player logged on. In lieu of...

 @bansite user12.vnn.luser.com

... one should do:

 @bansite *vnn.luser.com - or -
 @bansite *luser.com

@Bansite has two disadvantages: it locks out other players who connect from the same site, and it offers
no protection against players who you want to ban but can log on from alternate sites. (Wizard only)

BOOTALL

bootall

Boots all but your lowest numbered connection. This program does not work well. Cmd-@bootme, which
is widely available, is a better choice.

CHANGE

change <object>=<propname>:/<old>/<new> - or -
change <object>=<mesgtype>;/<old>/<new>

Edits a property or message, replacing string <old> with string <new>. The syntax varies slightly — that
is, it uses either a : colon or ; semi-colon delimiter — for messages and properties. 'Messages' are 'name',
'desc', 'succ', 'osucc', 'fail', 'ofail', 'drop', and 'odrop'. Examples:

 change here=_arrive/check:/444/445
 change me=desc;/top hat/beret

@CHECK

@check

Checks all objects in your location for completeness, with the definition of 'complete' being adjusted as
appropriate for the object type. For example, exits are checked for links, descs, succs, osuccs, and odrops.
Locked exits are checked for fails and ofails. The command prints a list of objects that need further work.

@DOING

@doing <msg>

Sets your 'sticky do' string... that is, the message shown with your name and times with commands WHO and
whodo. The original purpose of doing strings was to provide a way for people to let others know what they
are doing at the moment. Rather than frequently updating their doing string, most players set it to some
(presumably) witty or interesting 'bumpersticker' type remark, and leave it.

EDIT

edit <object> = <prop> or,
edit <object> = @<mesgtype>

This unusual and useful command is works only with the TinyFugue UNIX client. Entering the command
and parameters pulls the value of <prop> or <mesgtype> into your client window, with the cursor
positioned for editing. You can then use arrow keys, backspace, etc., to edit the property value. Pressing
'enter' stores the new property value. <Mesgtype> can be 'name', 'desc', 'succ', 'osucc', 'fail', 'ofail', 'drop', or
'odrop'.

Before using edit, you must define the following TinyFugue macro:

 /def -fg -p100 -t"##edit> *" = /grab %-1

Like most TinyFugue settings, this setting is 'volatile'... It is not retained between TinyFugue sessions. To
avoid having to redefine it each time, put the definition line in TinyFugue's resource file, .tfrc, so that it will
be defined each time you start the client.

FETCH
 | RETRIEVE | GRAB
fetch <object 1> from <object 2>

Removes <object 1> from <object 2>. You must be carrying <object 2> and it must not be locked or
container_locked against you. The object names do not have to be typed completely: partial strings
sufficient to distinguish the object from others you are carrying will work. See also put, below.

LOOKAT

lookat <player's> <object>

Does a 'possessive look', showing you the description of an object being carried by another player. Example:

lookat tarka's linux club pin.

LSEDIT
 | LSE
lsedit <object> = <list name>

Puts you in an interactive list editor. See Sections 2.1 and 4.1 for more information.

LSPROP
 | LSP
lsprop <object> [= <path>]

Lists all properties on object and their values. If a path is specified, it will list only properties on that path.
Examples:

 lsp me Lists all properties on your character
 lsp me = _descs .. Lists all properties in your _descs/ directory

PROPCP
 | CP
cp <object 1>=<prop 1>,<object 2>=<prop 2>

Copies <prop 1> and its value from <object 1> to <prop 2> on <object 2>. This example copies
the @succ of exit 'out' to another exit:

 cp out=_/sc,#1344=_/sc

Propcp handles partial input well. If <object 1> is omitted, it assumes <prop 1> is on the user. If
<object 2> is omitted, it assumes the destination object is the same as <object 1>... i.e., that you are
copying from one prop to another on the same object. If <prop 2> is omitted, is assumes that it is the same
as <prop 1>... i.e., that you are copying a property on one object to the same property on a different object.
If more information is omitted, the program will ask for it. Rather than providing all — or even any — of the
information on the command line, one can simply type cp, and respond to prompts. You must control both
objects. See also propmv, below.

PROPMV
 | MV
mv <object 1>=<prop 1>,<object 2>=<prop 2>

Moves <prop 1> and its value from <object 1> to <prop 2> on <object 2>, erasing <prop 1>.
This example moves the fail message on 'out' to the ofail:

 mv out=_/fl,out=_/ofl

Propmv handles partial input well. If <object 1> is omitted, it assumes <prop 1> is on the user. If
<object 2> is omitted, it assumes the destination object is the same as <object 1>... i.e., that you are
moving a value from one prop to another on the same object. If <prop 2> is omitted, is assumes that it is
the same as <prop 1>... i.e., that you are moving a property on one object to the same property on a
different object. If more information is omitted, the program will ask for it. Rather than providing all — or

even any — of the information on the command line, one can simply to mv, and respond to prompts. You
must control both objects. See also propcp, above.

@PURGE

@purge <player> = yes

Recycles all of <player's> belongings. Most often, this will be used before @toad. It is a good idea to
do @owned <player> first, and make suitable arrangements. Exits leading to rooms owned by the player
will become unlinked, and should either be relinked or recycled. Public building — or rooms that are jointly
used by the player and others — should be chowned to someone else. Mortals my purge only themselves;
wizards may purge any player.

PUT
 | REPLACE | STUFF
put <object 1> in <object 2>

Moves <object 1> from your inventory into the contents of <object 2>. You must be holding both
objects, and <object 2> must not be locked or container_locked against you. Partial names for
both objects will work. See also fetch, above.

READ
 | WRITE | EDIT | ERASE | PROTECT

These commands operate bulletin boards that run from the standard bulletin board program, gen-mesgboard.
Read is also an in-server alias for look. So, in a room that contains a bulletin board, read is a bulletin
board command; elsewhere, it does a look.

 read Show the headers of all posted messages.
 read new Show headers of all messages less than 2 days old.
 read recent Show headers of all messages after last read messages.
 read <keyword> Show headers of all messages with matching <keyword>.
 read -<days> Show headers of all messages fewer than <days> old.
 read <mesgnum> Read the message referred to by the given message number.
 read - Read the next message, after the last one you read.
 read -recent Read all messages after last read message, in one continuous

stream.
 write Post a message. Prompts for subject and keywords.
 write <subject> Post a message with given <subject>. Prompts for keywords.
 write <subject>=<keywords> Post a message with given <subject> and <keywords>.
 erase <message num> Lets message owner erase a previously written message.
 editmesg <message num> Lets message owner edit a previously written message.
 protect <message num> Lets a wizard protect a message from auto-expiration.

@REGISTER
 | @REG

@reg <object> = <registered name>
@reg #me <object> = <registered name>
@reg #prop <target object>:<propdir> <object> = <registered name>

Sets a registered name for <object>. (See Section 2.1.5 for more information on registered names).

The default format, @reg <object> = <registered name>, creates a global registered name by
setting property _reg/<reg name> on room #0 with the value of <object's> dbref. Because a
property is being set on room #0, this will result in a 'Permission denied' error for a mortal player (unless she
happens to own room #0). The following example, which would be typed by a wizard, gives the gen-nothing
program the registered name of nothing; players would then be able to link actions to it by typing @link
<action> = $nothing

 @reg gen-nothing = nothing

Registered names can be set on your character rather than on room #0, in which case they will be be
meaningful only for you, by using the #me argument. The following example, which could be typed by a
mortal, or by a wizard who wants to create a personal registered name, gives a puppet object the registered
name 'pup'. It could then be specified by $pup, rather than its dbref, as in @tel $pup = me.

 @reg #me squiggy = pup

You can over-ride the target propdir, from _reg/ to anything else, by using the #prop argument. If the
target propdir does not begin with _reg/ , the setting will not be usable as a registered name; this would
simply be a way to set a property with data type dbref rather than string (which could also be accomplished
with @propset). The following example sets property _disconnect/cleanup in the current room
with the dbref of program gen-sweeproom.

 @register #prop here:_disconnect gen-sweeproom=cleanup

The same thing could be accomplished by typing:

 @propset here=dbref:_disconnect/cleanup:<#dbref of gen-sweeproom>

This example makes a setting in sub-propdir _reg/lib, giving the lib-strings library program the
registered name $lib/strings.

 @register #prop #0:_reg/lib lib-strings = strings

The same thing could be accomplished by typing:

 @register lib-strings = lib/strings - or -
 @propset #0 = dbref:_reg/lib/strings:<#dbref of lib-strings>

@RESTART

@restart

This command kills all active programs and restarts any set Autostart. It works by forcing the user to do
@kill all, which means that God may not use it if the muck is running with the compile-time option
god_priv. (Wizard only)

@SIZE

@size <object>

Calculates the memory used by <object>. Note that if cmd-@sizer is not set Wizard, the memory
used by Wizard props will not be included in the total.

SWEEP

sweep (sweeps all sleepers in the room)
sweep <player> (sweeps <player>)

Sends home all players in a room who are sleeping, and who are not owners of the room. It also sends their
contents that they do not own home when it homes them. If you control the room, you may also sweep online
players who do not control the room.

The following prop settings, on either yourself or a room, as appropriate, are used to configure the command:

 _sweep/sweep message shown when you sweep the room.
 _sweep/swept message shown if you are swept.
 _sweep/fmt/ propdir where sweep-player formats are stored.
 _sweep/fmt/std message shown if you sweep an individual player.
 _sweep/to where players swept in this room go to. ie: room #1234
 _sweep/authorized players authorized to sweep this room. Format: #12 #432 #190
 _sweep/immune players immune to general sweeps in this room.
 _sweep/public? if 'yes' means this room in sweepable by anyone.
 _sweep/immune? If 'yes', means this THING doesn't home from inventory when the player is

swept.

UPTIME

uptime

Displays the time since the server was last restarted.

@VIEW

@view <program>

Displays documentation for <program>, if the program is appropriately configured.

To configure a program for use with @view, set it Link_OK and set the program's _docs property with a
string that emulates a command that would show the documents. The most common way to do this is to set
the _docs property to a command that @lists the header comment of the program. For example, if the
first 54 lines of program claimhome.muf(#47) are a comment with documentation, one would configure
the program for use with @view by typing:

 @set #47 = L
 @set #47 = _docs:@list #47 = 1 - 54

Other command formats are possible. Another example:

 @set #47 = _docs:info claimhome

@WHEN

@when <object>

Displays timestamp information for <object>: time created, time last modified, time last used, and
usecount. <object> defaults to 'here'. You must control <object>.

3.0 PROGRAMMING
MUCK supports two online programming languages, MPI and Muck FORTH, or MUF. MPI is an interpretted
language (you don't need to compile it; the server reads the code directly) available to all players. MUF is a
compiled, stack-based language, available to players who have a Mucker bit (an M flag). In general, MPI is
better for one-off programming tasks and customizing messages (descriptions, exit @osucc's, etc.). MUF
is better for public utilities and tasks that involve modifying the database.

The following sections describe both MPI and MUF in greater detail.

3.1 Overview: MPI
MPI is an interpretted language with a LISP-like syntax available to all players. Because it is universally
available, MPI includes some security features that restrict its power. In general, MPI can only read props on
the triggering object and on objects controlled by the controller of the object on which the MPI string is
stored, and can only set props on the latter... on objects controlled by the owner of the MPI object. Other than
setting props as mentioned, it is difficult (but not impossible) to significantly modify the database with MPI,
but is ideally suited for message-handling. And because it is interpretted, it is well-suited for one-off
programming tasks: no separate compiling and linking operations are needed, nor is a separate program
object for holding the code.

MPI's syntax consists of nested functions enlcosed in curly braces that are evaluated left-to-right and 'from
the inside out', much like mathematical expressions are evaluated outward from the innermost set of
parentheses. For example...

 {if:{eq:{ref:me},#1},Hey it's God!,Hello world!}

The MPI parser will first evaluate the innermost function, {ref:me}. The {ref} function returns the
dbref of its single argument — which in this case is 'me' — so, {ref:me} returns the user's dbref. The
returned expression 'replaces', as it were, the function. So, if the user's dbref were #123, the MPI string
would in effect and at this moment be...

 {if:{eq:#123,#1},Hey it's God!,Hello world!.}

Then the next-innermost expression, effectively {eq:#123,#1}, would be evaluated. The {equals}

function returns true if the two arguments supplied are the same; otherwise it returns false. In this case, the
two arguments are not the same, so {equals} will return false. At this point, the MPI value for false — the
string "0" — will replace the function. (A "" null string is also false in MPI. Any value other than "" or "0"
is considered true.) So, at this point the string would in effect be...

 {if:"0",Hey it's God!,Hello world!}

Finally, this, the outermost function will be evaluated. The {if} function takes three arguments. If the first
argument is true, it returns the second argument. If the first argument is false, it returns the third argument. In
this example, the first argument is false, so the the third argument will be returned: MPI will return the string
"Hello world!" to player #123. If God had triggered the string, the {if} test would have been true,
and the string "Hey it's God!" would have been returned instead.

The {debug} function displays the progress of the parser. Enclosing the whole of our example in a
{debug} function will show the process described above.

> @succ testmpi = {debug:{if:{eq:{ref:me},#1},Hey it's God!,Hello
world!}}
 Message set.
> testmpi
 (@Succ) {IF:"{eq:{ref:me},#1}", "Hey it's God!", "Hello world!"}
 (@Succ) {EQ:"{ref:me}", "#1"}
 (@Succ) {REF:"me"}
 (@Succ) "me"
 (@Succ) {REF:"me"} = "#123"
 (@Succ) "#1"
 (@Succ) {EQ:"#123", "#1"} = "0"
 (@Succ) "Hello world!"
 (@Succ) {IF:"{eq:{ref:me},#1}", "Hey it's God!", "Hello world!"} =
"Hello world!"
 Hello world!

In the lines from the first half of the debugging output — where indentation is moving to the right — the
parser is essentially finding the innermost, left-most function to be evaluated. The remaining portion, with
lines ending in ' = <value> ' and indentation moving back to the left, depicts the series of returned
expressions described above.

The keywords 'me' and 'here' can be used as normal. In addition, MPI supports the keyword 'this',
which will be replaced by the dbref of the object on which the MPI is stored.

The variable functions {&cmd}, {&arg}, and {&how} may be used to retrive information about how
MPI was triggered. {&cmd} stores the command name typed to trigger the MPI. {&arg} stores any
arguments typed along with the command. {&how} stores the method by which MPI was triggered, and will
have values such as (@desc), (@succ), (@osucc), (@lock), etc.

Functions can be nested up to 26 levels deep. Loops may iterate a maximum of 256 times, at which point the
automatically exit. Lists may have a maximum of 256 lines, or 4096 characters, whichever is less.

An MPI string that appears in a _/ prop (a @succ message, a @desc, and so forth) will be parsed
automatically. For other triggering props, the parser must be called by an & ambersand at the beginning of

the prop string.

> @set me=_oarrive/aaa:&{null:{otell:pads in quietly.}}
 Property set.

The arguments of functions are separated by commas. Commas appearing in argument strings will confuse
the parser: functions will seem — to it — to have too many arguments. So, commas in argument strings must
be 'escaped'... i.e., preceded with a \ backslash escape character, which tells the parser to treat the next
character literally, rather than as an MPI instruction. For example, if we wanted our first example to say
"Hey, it's God!" or "Hello, world!", the commas would need to be escaped with a backslash
character.

 {if:{eq:{ref:me},#1},Hey\, it's God!,Hello\, world!}

Complex or very long MPI instructions are often better stored in a list, where whitespace can be used to
make the code more readable, rather than in a single prop where all will run together in an opaque mass of
characters. A simple pointing string using the {lexec} ('execute list') function can then be placed in the
triggering prop.

> lsedit harley = bikecode
 < Welcome to the list editor. You can get help by entering '.h'
>
 < '.end' will exit and save the list. '.abort' will abort any changes.
>
 < To save changes to the list, and continue editing, use '.save'
>

> {null:
> {if:
> {
> (lots of complicated really cool
 motorcycle code goes here)
> }
> }
> }
> .end
 < Editor exited. >
 < list saved. >

> @succ ride harley;ride motorcycle;ride cycle = {lexec:bikecode}
 Message set.

> ride harley
 (The Harley does something amazing.)

The {lexec} function executes MPI in a list. The {exec} function executes MPI in a property, and thus
provides another way to break code up into managable pieces. MUSH coders especially might find this
method more intuitive.

3.1.1 MPI Macros
Frequently used portions of MPI code can be defined as macros, by setting properties in the _msgmacs/
directory of an object located in the command search path (see Section 2.3.3. Macros defined in the
_msgmacs/ directory of room #0 can be used by all players and objects.

An example: To define a global 'look-notify' — a macro that tells users when someone looks at them we �

could set the following property:

 @set #0=_msgmacs/look-notify:{null:{tell:*{name:me} looked at
you*,this}}

Some standard MPI macros are listed here. Wizards can copy these macros to the MUCK's global MPI
macro directory. Alternatively, players can copy individual entries to _msgmacs/ directory on themselves
or objects they own.

3.1.2 MPI Examples
Here are a few examples of MPI code. Contributions are welcome.

This example describes an exit such that users can see who is on the other side by looking at the exit:

@desc cafe=Glancing in the Cafe door, you see {if:{commas: {contents:
#179}}, {commas:{contents:#179}, and ,item,{name:{&item}}},that it is
empty}.

(more to come)

3.1.3 MPI Reference
Connection Functions
awake idle online ontime

DB Functions
contains contents controls dbequals exits
flags force fullname holds istype
links location locked money name
nearby owner ref testlock type

List-Handling Functions
commas count lcommon lmember lrand
sublist lremove lsort lunion lunique
mklist

Loop Functions
filter fold for foreach parse
while

Logical Functions
and equals ge gt if
le lt not notequals or
xor

Math Functions
absolute addition decrement dice distance
divide increment maximum minimum modulo
multiply sign subtraction

Miscellaneous Functions
attr debug debugif delay fox
func isnum isdbref kill macros
muckname muf version

Property Handling
concat delprop exec exec! index
index! lexec list listprops prop
prop! propdir rand select store
timesub

String Functions
center eval instr left literal
midstr nl null otell pronouns
right smatch strip strlen subst
tell tolower toupper

Time Functions
convsecs convtime created date delay
ftime lastused ltimestr modified secs
stimestr time timestr tzoffset timesub
usecount

Variable-Handling Functions
&arg &cmd &how set variable
with

Definitions
Trigger

The object that the MPI script is evaluated from.

List
A string containing several individual substring items, seperated by carriage return characters.

Property-Based List
A set of consecutively numbered properties that each contain one string in a list of strings. Property
based lists are often numbered like: listname1, listname2, listname3, listname4, etc.
Another popular format is listname#/1, listname#/2, listname#/3, etc. MPI can read in
either of those formats, and several more, for that matter.

False
A string value of "0", or a null string ("").

True
Anything that is not False.

ABS
 | ABSOLUTE
{abs:expr}

Returns the absolute value of expr.

ADD
 | ADDITION
{add:expr1,expr2}
{add:expr1,expr2,expr3...}

Returns the sum of the values of expr1 and expr2. If more than two args are given, then this will add all
the args together and return the result.

AND
 | &&
{and:expr1,expr2...}

Returns true if expr1 and expr2 evaluate as true. Otherwise, this returns false. If expr1 was false, this
doesn't bother to evaluate expr2, as it does C-style shortcutting. If there are more than two arguments, then
this will evaluate all of them until either one returns false, in which case this function returns false, or until it
has evaluated all of the arguments. This function returns true only if all the arguments evaluate as true.

ARG
 | &ARG
{&arg}

The {&arg} variable contains a string with the value of the command line arguments the user entered. This
is so that you can have stuff like MPI in the fail of an exit, and when the user triggers the exit, and has some
extra text on the line they entered, other than the exitname, the MPI can take that extra stuff as arguments for
use. Note that you need to set an action Haven to get it to accept command line arguments.

ATTR
| ATTRIBUTE
{attr:attr1,attr2...,text}

This formats text with color and formatting attributes specified as attr1, attr2, etc. You may specify
up to 8 attributes. Example, to format the string 'WARNING!' in bold red letters, use
{attr:bold,red,WARNING!}. Nesting attributes is not recommended. (fb6.0+)

AWAKE

{awake:player}

Returns how many times player is connected. This means that it will returns 0 if the player is not connected.
If the given object is not a player, it will return 0. In all other cases, it will return a positive number, being
how many times the given player is connected to the server.

CENTER

{center:string}
{center:string,fieldwidth}
{center:string,fieldwidth,padstring}

Takes a string and pads it to fit the given fieldwidth, with the string center justified. If no padstring is given,
it assumes that it will pad the string with spaces. If no fieldwidth is given, it assumes that the field width is 78
characters. Example: {center:Hello,10,1234567890} would return the string "123Hello12"

COMMAS

{commas:list}
{commas:list,lastsep}
{commas:list,lastsep,var,expr}

Takes a list and returns a plain english comma delimited string with the items in it. For example, {commas:
{mklist:Tom,Dick,Harry}} will return "Tom, Dick and Harry". If you specify the lastsep argument,
you can replace the "and" with something else, such as "or" to get a result like "a, b or c". Note: You need to
be careful to include spaces around the "or" or else you might get a result like "a, borc".

Example:

 {commas:{mklist:a,b,c}, or }

If the var and expr arguments are passed, then for every item in the list, it will set the value of the given
variable name (which it will declare) to the item, then evaluate expr, and use the result in the string it outputs.
Example: {commas:{contents:here},\, or ,v,{name:{&v}}} will return the name of every
object in the room in a comma separated list, using ", or " as the final conjunction. ie: "Tom, Can of SPAM,
Dick, or Harry."

CMD
 | &CMD
{&cmd}

The {&cmd} variable contains the command name the user used, that caused the MPI to run. This is
generally the exit name that the player triggered. For example, if the player typed 'east', and triggered the exit

named 'east;e;out', which ran some MPI commands, the {&cmd} variable would have a value of "east".

CONCAT

{concat:listname}
{concat:listname,obj}

Returns a string, containing the concatenated lines of a property based list. It concatenates the list semi-
intelligently, putting a single space between lines normally, and two spaces between lines when the previous
one ended with a period, exclamation mark, or question mark. A property based list is a series of properties
that are consecutively numbered. The server understands several different formats, and can also read in
property lists in either the propnameX format, or the propname#/X format. It does not evaluate the
contents of the list for embedded MPI commands. If no obj argument is supplied, then it looks for the list
somewhere down the environment from the trigger object. Otherwise, it looks for the list down the
environment from the given object.

CONTAINS

{contains:obj1}
{contains:obj1,obj2}

Returns true if obj1 is within obj2, or within anything it contains, or within anything they contain. If
obj2 is not given, then it checks to see is obj1 is held by the player, or by anything they hold, etc.
Basically, this just sees if obj1 is within the locational environment of obj2.

CONTENTS

{contents:obj}
{contents:obj,type}

Returns a list of the contents of the given object. If a second argument is passed to it, it restricts the listing to
only those objects that are of the given type. Either the object must be nearby the trigger object, or else the
owner of the trigger object must control the object. Otherwise this will error out with a Permission
Denied error. The valid object type values are Room, Thing, Exit, Player, Program, and Bad.
Hint: If you need to get a list of two types of objects from the room, just concatenate the lists from two calls
to this function, with each object type you want. For example:

 {mklist:{contents:here,player},{contents:here,thing}} - or -
 {contents:here,player}{nl}{contents:here,thing}

CONTROLS

{controls:obj}
{controls:obj,player}

If one argument is given, then this returns true ("1") if the trigger object's owner controls the given object. If
two arguments are given, then it returns true if the given player controls the given object. Otherwise, this

returns false. ("0") Wizards control everything

CONVSECS

{convsecs}

Converts systime seconds into a readable time string.

CONVTIME

{convtime:string}

Converts "HH:MM:SS Mo/Dy/Yr" format time string to systime seconds.

COUNT

{count:list}
{count:list,sep}

This counts the number of \r delimited items that are in the given list. This is effectively a list item count. If
the sep argument if given, then it counts the number of sep delimited substrings in list. ie: The default sep is
\r. (A carriage return.)

CREATED

{created:obj}

Returns the systime when obj was created.

DATE

{date}
{date:timezone}

Returns a date string in the form mm/dd/yy. If the timezone argument is given, then it offsets the date
returned by that number of hours.

DBEQ
 | DBEQUALS
{dbeq:obj1,obj2}

Returns true if obj1 and obj2 refer to the same object. This does name matching, so
{dbeq:*Wizard,#1} will return true if #1 is named Wizard.

DEBUG

{debug:expr}

This will show MPI debugging information for all the commands within the given expression. This is useful
for seeing why something isn't working. This returns the result of the evaluation of expr.

DEBUGIF

{debugif:condition,statement}

If condition evals true, use debug mode is used when evaluating statement. Otherwise the statement is
evaluated in regular mode.

DEC
 | DECREMENT
{dec:var}
{dec:var,val}

Decrements the value of the given variable by one, returning the result. If a value argument is given, then it
will subtract that from the variable, instead of the value 1.

DELAY

{delay:secs,expr}

Evaluates the given expression, then puts the result of that on the timequeue, to execute after the given
number of seconds. At that time, the string is evaluated again, and displayed to the user, or to the room,
depending on whether it was run from a regular message such as @succ, or from an omessage such as
@osucc. Since the expression is evaluated both before and after being delayed, you need to put MPI code
that is to run after the delay within a {lit:expr} command. If a {delay} evaluation is a null string, then
the notify or notify_except will not be done. {Delay} will return the process ID of the event it puts on the
timequeue.

DELPROP

{delprop:propname}
{delprop:propname,object}

This function will remove a property and all of its subsidiary properties in the case that it is a propdir. This
will delete the property on the trigger object, unless an object argument is specified. If one is, then it will
delete the property on that given object. This function returns a null string. If you specify a propname that is
protected, you will get an error of Permission Denied. You are only allowed to delete properties from
objects that are owned by the owner of the trigger object.

DICE

{dice:X}
{dice:X,Y}
{dice:X,Y,Z}

Given one parameter, picks a random number between 1 and X. (1dX) Given two parameters, it randomly
generates Y numbers between 1 and X, and adds them together. (YdX) A third parameter, if given, is just
added to this sum as a modifier. (YdX+Z)

DIST
 | DISTANCE
{dist:x,y} Returns distance from 0,0 that x,y is.
{dist:x,y,z} Returns distance from 0,0,0 that x,y,z is.
{dist:x,y,x2,y2} Returns distance between x,y and x2,y2.
{dist:x,y,z,x2,y2,z2} Returns distance between x,y,z and x2,y2,z2.

Given two arguments, this calculates the distance of a 2D point from the origin. Given three arguments, this
calculates the distance of a 3D point from the origin. Given four arguments, this calculates the distance
between a pair of 2D points. Given six arguments, this calculates the distance between a pair of 3D points.

DIV
 | DIVIDE
{div:expr1,expr}
{div:expr1,expr2,expr3...}

Returns the value of expr1 divided by expr2. Division by zero will return zero. If more than two
arguments are given, then the first argument is divided by the second, and the result is divided by the third,
etc, for all of the arguments. For example: {div:180,6,3,5} would be read like 180 / 6 / 3 / 5,
and a result of 2 would be returned.

EQ
 | EQUALS | ==
{eq:expr1,expr2}

If expr1 and expr2 evaluate out to the same value, then this returns true. Otherwise, this returns false. If
both expressions evaluate out to numbers, then this compares them numerically.

EVAL

{eval:string}

Sort of the exact opposite of {lit:}. This takes a string, and evaluates it for MPI commands embedded
within it. This can be used on the output of {list:}, for example.

EXEC

{exec:propname}
{exec:propname,obj}

Returns the string value of the given property, after having evaluated any embedded MPI commands that it
contained. If no object parameter is passed to it, it looks for the property somewhere down the environment
from the trigger object. Otherwise, it looks down the environment from the object specified. If the property is

not found, this returns an empty string. If the property that it tries to access is read restricted and the owner of
the trigger object does not own the object that the property is found on, then the MPI script stops with a
Permission denied error.

EXEC!

{exec!:propname}
{exec!:propname,obj}

Returns the string value of the given property, after having evaluated any embedded MPI commands that it
contained. If no object parameter is passed to it, it looks for the property on the trigger. Otherwise, it looks
for the property on the object specified. If the property is not found, this returns an empty string. If the
property that it tries to access is read restricted and the owner of the trigger object does not own the object
that the property is found on, then the MPI script stops with a Permission denied error.

EXITS

{exits:obj}

Returns a list of all the exits on the given object. The owner of the trigger object has to control obj, or else
this errors out with Permission denied. Programs and exits never have exits attached to them.

FILTER

{filter:var,list,expr}
{filter:var,list,exp,sep}
{filter:var,lst,exp,sep,s2}

This evaluates expr for each and every item in the given list. On each evaluation, the temporary variable
var will contain the value of the item under scrutiny. This function returns a list containing all of the items
from the input list, for which expr evaluated true. Var will only be defined for the duration of expr, and
will be undefined after the {filter} construct finishes. If sep is given, then it uses that string as the item
seperator in the input list, instead of the usual carriage return character. If s2 is defined, then it will use that
string to seperate the items in the list it returns, instead of the normal carriage return. Sep and s2 can be
multiple characters long.

FLAGS

{flags:obj}

Returns a flaglist string from obj., such as PM2J. The object must either be in the vicinity, or it must be
controlled by the owner of the trigger object.

FOLD

{fold:var1,var2,list,expr}

{fold:var1,var2,lst,expr,sep}

This takes a list and stores the first two items in var1 and var2, then evaluates expr. The value returned
by expr is then put in var1, and the next list item is put in var2. Expr keeps being evaluated in this
way until there are no more list items left. This returns the last value returned by expr. If a sep argument is
given, the input list is assumed to have its individual items delimited by that string, otherwise it assumes a
carriage return.

FOR

{for:varname,start,end,increment,command}

Acts as a counting loop, like BASIC's for loops. The varname is the name of the variable that it will
create and use to store the count value. The start value will be the initial value of the variable, and the end
value will be the value that the variable is working towards. The increment is how much the variable will be
incremented by in each loop. The command will be evaluated for each value of the variable between the
beginning and ending values. For example: {null:{for:i,10,1,-1,{tell:{&i}}}} will echo a
countdown from ten to one, inclusive, to the user.

FORCE

{force:object,command}

Forces the given player or thing to do the given command. The thing forced must be @flock'ed to the
trigger object, or the trigger object's owner, and it must be set Xforcible, or else this function will get a
Permission denied error. This function returns a null string. {Force} cannot force a thing-object to
do something, if it is set Dark, is in a room set Zombie, if it has the same name as a player, or is owned
by a player set Zombie.

FOREACH

{foreach:var,list,expr}
{foreach:var,list,expr,sep}

This evaluates expr for each and every item in the given list. On each evaluation, the temporary variable
var will contain the value of the item under scrutiny. Var will only be defined for the duration of expr,
and will be undefined after the {foreach} construct finishes. If sep is given, then it uses that string as the
item seperator in list, instead of the usual carriage return character. Sep can be multiple characters long. This
structure returns the result of the last evaluation of expr. Example: {foreach:thing,
{contents:here},{store:1,_seen}}

FOX

{fox}

Returns the string YARF!

FTIME

{ftime:format}
{ftime:format,tz}
{ftime:format,tz,secs}

Returns a time string in the format you specify. See the MUF Reference entry on timefmt for the %subs that
you can use in the format string. If specified, tz is the number of hours offset from GMT. If specified, secs
is the systime to use, instead of the current time. {ftime:%x %X %Y,8,0} will return the date and time
for systime 0, for the Pacific time zone.

FULLNAME

{fullname:obj}

Returns the name of the given object. In the case where the object is an exit, then the full name of the exit is
given, including all the ; aliases. The object must be in the immediate vicinity, or be controlled by the owner
of the trigger object.

GE
 | >=
{ge:expr1,expr2}

Evals expr1 and expr2, then returns true if expr1 was larger or equal.

GT
 | GREATERTHAN | >
{gt:expr1,expr2}

Evaluates expr1 and expr2, then returns true if expr1 was larger.

HOLDS

{holds:obj1}
{holds:obj1,obj2}

Returns true if the location of obj1 is obj2. If no obj2 argument is given, then this will return true if the
location of obj1 is the player.

HOW
 | &HOW
{&how}

The {&how} variable is a short string telling what ran the MPI command. It can have the values
'(@desc)', '(@succ)', '(@osucc)', etc. for when it is run from an @desc, an @succ, an
@osucc, or whatever. It can also have the value '(@lock)' for when it is run from a lock test.

IDLE

{idle:player}

Returns player idle time in seconds. If the given player is not connected, or is not a player object at all, then
this will return -1. This returns the idle time for the most recently connected connection, if there are multiple
connects.

IF

{if:check,true}
{if:check,true,false}

This is a simple conditional command. It evaluates the check argument and if it is true, then it evaluates the
true argument and returns its result. If check does not evaluate as true, then it will evaluate the false
argument, if there is one, and returns its result. If there is no false argument, and check evaluated false, then
it returns a null string. Example:

 Your computer is {if:{eq:2,3},broken!,All right.}

INC
 | INCREMENT
{inc:var}
{inc:var,val}

Increments the value of the given variable by one, returning the result. If a value argument is given, then it
will add that value to the variable, instead of the value 1.

INDEX

{index:propname}
{index:propname,obj}

Returns the string value of the property whose name is stored in the given property. This sounds confusing,
but it's basically just the same as {prop:{prop:propname}}. If no object parameter is passed to it, it
looks for both the index property and the referenced property somewhere down the environment from the
trigger object. Otherwise, it looks down the environment from the object specified for both of them. If either
property is not found, this returns an empty string. If the property that it tries to access is read restricted, and
the owner of the trigger object does not own the object that the properties are found on, then the MPI script
stops with a Permission denied error.

INDEX!

{index!:propname}
{index!:propname,obj}

Returns the string value of the property whose name is stored in the given property. This sounds confusing,
but it's basically just the same as {prop!:{prop!:propname}}. If no object parameter is passed to it, it

looks for both the index property and the referenced property on the trigger object. Otherwise, it looks on the
specified object for both of them. If either property is not found, this returns an empty string. If the property
that it tries to access is read restricted, and the owner of the trigger object does not own the object that the
properties are found on, then the MPI script stops with a Permission denied error.

INSTR

{instr:str1,str2}

Lists the position of the first substring within str1 that matches str2. If no such substring exists, then this
returns a 0.

ISDBREF

{isdbref:dbref}

Returns true if the string passed to it is a valid dbref.

ISNUM

{isnum:number}

Returns true if the string passed to it is a valid number.

ISTYPE
{istype:obj,typ}

Returns true if the given object if of the given type. Valid types are: Bad, Room, Exit, Thing,
Player, and Program.

KILL

{kill:0}
{kill:processID}

Kills a process on the timequeue, that was possibly created by {DELAY}. If the process ID it is given is 0,
then it will kill all processes done by that trigger object. If the process to be killed was not set off by that
trigger, and was not set off by any object that the owner of the trigger owns, then this will error out with
Permission denied. If no process is found, this returns 0. If a process was found, and the permissions
were okay, then the process is killed, and {kill} returns the number of processes killed. Usually one.

LASTUSED

{lastused:obj}

Returns the systime when obj was last used.

LCOMMON

{lcommon:list1,list2}

Creates a list containing every item that appears in both list1 and list2. Any duplicate items in the
resulting list are removed.

LE
 | <=
{le:expr1,expr2}

Evals expr1 and expr2, then returns true if expr1 was smaller or equal.

LEFT

{left:string}
{left:string,fieldwidth}
{left:string,fieldwidth,padstring}

Takes a string and pads it to fit the given fieldwidth, with the string left justified. If no padstring is given, it
assumes that it will pad the string with spaces. If no fieldwidth is given, it assumes that the field width is 78
characters. Example: {left:Hello,10,_.} would return the string "Hello_._._"

LEXEC

{lexec:listname}
{lexec:listname,obj}

This takes a property based list, and concatenates all its lines together, stripping spaces from the beginning
and end of each one. It then evaluates the result for MPI commands, and returns the resulting string. A
property based list is a series of properties that are consecutively numbered. The server understands several
different formats, and can also read in property lists in either the propnameX format, or the
propname#/X format. If no obj argument is supplied, then it looks for the list somewhere down the
environment from the trigger object. Otherwise, it looks for the list down the environment from the given
object.

LINKS

{links:obj}

Returns the object reference of what the given object if linked to. Since exits can be meta-links, linked to
multiple exits, if there is more than one link, then this function returns a list of all the destinations, seperated
by carriage return characters. (\r)

LIST

{list:listname}

{list:listname,obj}

Returns a string, containing a carriage-return delimited list of individual lines from a property based list. A
property based list is a series of properties that are consecutively numbered. The server understands several
different formats, and can also read in property lists in either the propnameX format, or the
propname#/X format. It does not evaluate the contents of the list for embedded MPI commands. If no
obj argument is supplied, then it looks for the list somewhere down the environment from the trigger object.
Otherwise, it looks for the list down the environment from the given object.

LISTPROPS

{listprops:propdir}
{listprops:propdir,object}
{listprops:propdir,object,pattern}

This function will return a list that contains the full names of all the sub-properties contained by the given
propdir. If not given, object defaults to the trigger object. If a pattern is given, the sub-properties in the
propdir are each compared against the smatch wildcard pattern, and only those that match are returned in the
list. This comparison is only done on the last part of the property name after the last /. See also propdir and
smatch.

LIT
 | LITERAL
{lit:string}

Returns the literal string given as its parameter. This means you can have things that look like MPI
commands within it, and it will not evaluate them, but will rather just treat them as a string.

LMEMBER

{lmember:list,item}
{lmember:list,item,delimiter}

Returns 0 if the given item is not in the given list, otherwise, it returns the item's position in the list. The first
list item in the list would return 1, and the third would return 3, for example. If the delimiter argument is
given, then it treats the list as if it were delimited by that string, instead of by carriage returns. (\r's)
Example: {lmember:{mklist:a,b,c,d,e,f},d} would return 4.

LOC
 | LOCATION
{loc:obj}

Returns the location of the given object. The object must either be in the vicinity, or it must be controlled by
the owner of the trigger object.

LOCKED

{locked:player,obj}

Tests the _/lok (@lock) standard lock property on obj against the given player. Returns true if the lock is
locked against the player.

LRAND

{lrand:list}
{lrand:list,seperator}

Returns a randomly picked stringlist item from the given list. If the seperator argument is given, then it will
assume that the stringlist has its items delimited by the given seperator string, instead of by carriage returns.

LUNION

{lunion:list1,list2}

Combines the contents of list1 and list2, removing any duplicates.

LUNIQUE

{lunique:list}

Returns list with all duplicate items removed.

LREMOVE
{lremove:list1,list2}

Returns the contents of list1, with any items that match an item in list2 removed. The resulting list has
all duplicate items removed.

LSORT

{lsort:list}
{lsort:list,var1,var2,expr}

Returns the sorted contents of list. If 4 arguments are given, then it evaluates expr with a pair of values,
in var1 and var2. If expr returns true, then it will swap the positions of the two values in the list. It runs
this comparison on every pair of items in the list, so it will be evaluated N*N times, where N is the number
of items in the list. This method can also be used to randomize a list. Example:

 {lsort:{&list},v1,v2,{gt:{dice:100},50}}

LT
 | LESSTHAN | <
{lt:expr1,expr2}

Evaluates expr1 and expr2, then returns true if expr1 was smaller.

LTIMESTR

{ltimestr:secs}

Given a time period, in seconds, this will return a string, including a breakdown of all the time units of that
period. For example, given a number of seconds, it might return "1 week, 2 days, 10 mins, 52
secs".

MAX
 | MAXIMUM
{max:expr1,expr2}

Returns the greater of the values of expr1 and expr2.

MKLIST

{mklist:value...}

Returns a list with all the given values as list items, seperated by carriage returns. (\r's) Example:
{mklist:Tom,Dick,Harry} returns "Tom\rDick\rHarry". Note: A maximum of nine items can
be passed to the {mklist} function. If you need more, you can chain {mklist}s together. Example:

 {mklist:{mklist:a,b,c,d,e,f,g,h,i},j,k,l,m,n,o,p}

MIDSTR

{midstr:str,pos}
{midstr:str,pos1,pos2}

Returns the substring that starts at pos1 within str. If no pos2 is given, then the returned string is only
the character at the given pos1 position. If a pos2 position is given, then it returns the substring beginning
at pos1 and ending at pos2, inclusive. If pos1 or pos2 are negative, then they represent the position that
is that absolute number of characters from the end of the string. The first character in str is 1, and the last
one can always be referenced by -1. If a position would be before the beginning of the string, it is assumed to
be at the beginning of the string. If it would be beyond the end of the string, it is assumed to be at the last
character. If the starting position is later in the string than the ending position, then the returned string has the
characters in reverse order. If either pos1 or pos2 are 0, then this returns a null string. ("")

MIN
 | MINIMUM
{min:expr1,expr2}

Returns the lesser of the values of expr1 and expr2.

MODIFIED

{modified:obj}

Returns the systime when obj was last modified.

MOD
 | MODULO
{mod:expr1,expr2}

Returns the leftover remainder of expr1 divided by expr2. If more than two arguments are given, then
the first arguments is modded by the second, then the result of that would be modded by the third, and so on
and so forth. For example: {mod:91,20,3} would be read as 91 % 20 % 3, and a result of 2 would be
returned.

MONEY

{money:obj}

This returns the value of an object of type Thing, or returns how many pennies a player has.

MUCKNAME

{muckname}

Returns the muck name string. Example: FurryMUCK

MUF

{muf:prog,arg}

Runs the given MUF prog with the string arg on the stack. This returns the top stack value when the prog
exits. If the MPI code was run from a propqueue like _listen, or _connect, then {muf} cannot run a
MUF program with a Mucker level of less than 3

MULT
 | MULTIPLY
{mult:expr1,expr2}
{mult:expr1,expr2,expr3...}

Returns the product of the values expr1 and expr2. If more than two args are given, then they are all
multiplied together to get the result.

NAME

{name:obj}

Returns the name of the given object. If the object is an exit, the name returned is the first exit name it has
before the first ';'. The object must be in the vicinity, or controlled by the owner of the trigger object.

NE
 | NOTEQUALS | != | <>
{ne:expr1,expr2}

If expr1 and expr2 evaluate out to the same value, then this returns false. Otherwise, this returns true. If
both expressions evaluate out to numbers, then this compares them numerically.

NEARBY

{nearby:obj}
{nearby:obj,obj2}

If one argument is given, then this returns true ("1") if the given object is nearby to the trigger object. If two
arguments are given, then it returns true if the two objects are nearby one another. Otherwise, this returns
false. ("0") Nearby is defined as: 1) The two objects are in the same location, or 2) One object contains the
other, or 3) the two objects are in fact the same object.

NL
 | \r
{nl} or \r

Returns a carriage return character. This can be used to seperate items in a list, or can split the string at that
point, starting a new line. Example: the string:

 This is\ran example{nl}of using newlines.

would print out like:

This is
an example
of using newlines.

NOT
 | !
{not:expr}

Returns the logical NOT of expr. If expr was true, this returns false. If expr was false, this returns true.

NULL
{null:expr...}

Returns a null string, no matter what the expressions within it return. This can take up to nine arguments,
though you could pass the output of several commands as one argument.

ONLINE

{online}

Returns a list of players who are online. This function can only be executed by wizbitted objects.

ONTIME

{ontime:player}

Returns player's online time in seconds. If the given player is not connected, or is not a player object at all,
then this will return -1. This returns the online time for the most recently connected connection, if there are
multiple connects.

OR

{or:expr1,expr2...}

Returns true if expr1 or expr2 evaluate as true. Otherwise, this returns false. If expr1 was true, this
doesn't bother to exaluate expr2, as it does C-style shortcutting. If there are more than two arguments, then
this will evaluate them until either one returns true, or until it has evaluated all the expressions. This returns
false only if all of the expressions return false.

OTELL

{otell:string}
{otell:string,room}
{otell:string,room,player}

This will tell the given string to all the players in the room, except for the given player. If no room argument
is given, it is assumed to be the room that the triggering player is in. If no player is given, then it assumes that
you want to skip sending the message to the triggering player. If you pass it a player of #-1, it will send the
message to all the players in the room. This returns the message that was sent. If the trigger isn't a room, or
an exit on a room, and if the message doesn't already begin with the user's name, then the user's name will be
prepended to the message.

OWNER

{owner:obj}

Returns the owner of the given object. The object must be in the vicinity, or be controlled by the trigger
object's owner.

PARSE

{parse:var,list,expr}
{parse:var,list,expr,sep}
{parse:var,list,expr,sep,s2}

This evaluates expr for each item in the given list. On each evaluation, the temporary variable var will
contain the value of the item under scrutiny. This function returns a list containing the output of expr for
each item within the list. This lets you do direct translation of a list of dbrefs, for example, into a list of
names. var will only be defined for the duration of expr, and will be undefined after the {filter}

construct finishes. If sep is given, then it uses that string as the item seperator in the input list, instead of the
usual carriage return character. If s2 is defined, then it will use that string to seperate the items in the list it
returns, instead of the normal carriage return. Sep and s2 can be multiple characters long.

PRONOUNS

{pronouns:string}
{pronouns:string,object}

If passed one argument, evaluates the string and does pronoun substitution with regards to the using player. If
given two args, it does the pronoun substitution with regards to the given object.

PROP

{prop:propname}
{prop:propname,obj}

Returns the literal string value of the given property. If no object parameter is passed to it, it looks for the
property somewhere down the environment from the trigger object. Otherwise, it looks down the
environment from the object specified. If the property is not found, this returns an empty string. If the
property that it tries to access is read restricted and the owner of the trigger object does not own the object
that the property is found on, then the MPI script stops with a Permission denied error.

PROP!

{prop!:propname}
{prop!:propname,obj}

Returns the literal string value of the given property. If no object parameter is passed to it, it looks for the
property on the trigger. Otherwise, it looks for the property on the object specified. If the property is not
found, this returns an empty string. If the property that it tries to access is read restricted and the owner of the
trigger object does not own the object that the property is found on, then the MPI script stops with a
Permission denied error.

PROPDIR

{PROPDIR:propname,obj}

If the given property on the given object is a propdir, containing sub-properties, then this returns true.
Otherwise it returns false. Object will default to the trigger object, if not given.

RAND

{rand:listname}
{rand:listname,obj}

Returns the value of a randomly picked list item from a property based list. If no obj parameter is given,

then it looks down the environment from the trigger object for the list. Otherwise, it looks down the
environment from the given object.

REF

{ref:obj}

Returns the dbref of the given object in the form #xxxx. The object must be in the vicinity, or controlled
by the owner of the trigger object.

RIGHT

{right:string}
{right:string,fieldwidth}
{right:string,fieldwidth,padstring}

Takes a string and pads it to fit the given fieldwidth, with the string right justified. If no padstring is given, it
assumes that it will pad the string with spaces. If no fieldwidth is given, it assumes that the field width is 78
characters. Example:

 {right:Hello,10,_.}

would return the string

 "_._._Hello"

SECS

{secs}

Returns system time: the number of second since midnight 1/1/70 GMT

SELECT

{select:value,listname}
{select:value,listname,object}

Returns the value of a single list item from a sparse property list. The item chosen is the one who's line
number is the largest one that is less than or equal to the given value. If the list is missing any items, then
{select} will return the item in the list with the highest line number that is less than or equal to the given
value. For example, if the list has the following entries:

_junk#/1:one
_junk#/5:two
_junk#/16:three
_junk#/20:four

Then {select:9,_junk} will return "two", {select:16,_junk} will return "three", and
{select:25,_junk} will return "four".

SET

{set:var,value}

This sets the value of the given named variable to the given value. If no variable with that given name is
currently defined, then this gives an error message complaining about that.

SIGN

{sign:expr}

Returns -1 if expr is negative. Returns 1 if expr is positive. If expr is 0, then it returns 0.

SMATCH

{smatch:str,pattern}

Matches str against the wildcard pattern. If there is a match, this returns true, or "1". If it doesn't match,
this returns a value of "0", or false. In wildcard patterns, the following characters have the following
meanings:

 * matches any number of any character
 ? matches one character, of any type
 [abcde] matches one char, if it is a, b, c, d, or e
 [a-z] matches on char, if it is between a and z, inclusive
 [^abd-z] matches one char if it is NOT a, b, or beteen d and z
 {word1|word2} matches one word, if it is word1, or word2
 {^word1|word2} matches one word, if it is NOT word1 or word2
 \ escapes any of the prev chars, making it not special

STIMESTR

{stimestr:secs}

Given a time period, in seconds, this will return the most significant time unit of that time period. For
example, a number of seconds, that is equivalent to 9 days, 23 hours, 10 minutes, and 52 seconds, will be
have the value 9d returned, as the abbreviated most significant time unit.

STORE

{store:val,prop}
{store:val,prop,obj}

Stores a string value in a given property. If no obj parameter is given, then it stores the property on the trigger
object. Otherwise, it will store it on the given object. If you specify a propname that is protected, you will get
a Permission denied error. You are only allowed to store properties on objects controlled by the owner

of the trigger object. The trigger object is the object that triggered the evaluation of the MPI commands. This
function returns the string that is stored as the prop value. If you store a null value in the property, then it will
remove the property if it is not a propdir. It will clear the value of the prop if it is a propdir.

STRIP

{strip:string}

Returns a copy of string with all the spaces stripped from the beginning and the end.

SUBLIST

{sublist:list,pos1}
{sublist:list,pos1,pos2}
{sublist:list,pos1,pos2,sep}

Takes a list, and returns a subset of the list items within it. The subset is all the list items between list item
pos1, and list item pos2, inclusive. If the pos2 argument is omitted, it assumes that pos2 is the same as
pos1. If pos2 is less than pos1, then all the list items between pos2 and pos1 are returned, in reversed
order. If pos1 or pos2 are negative, it counts that many list items back from the end of the list, so -1 is the
last list item, and -5 would be the fifth from last list item. The input list is assumed to be delimited by
carriage returns (\r) unless the sep argument is given.

SUBST

{subst:str,old,new}

Returns a copy of str with all substring instances of old replaced by the text specified by new. Basically
just substitutes the new text for the old text in str. Example: {subst:Hello World!,l,r} would
return "Herro Worrd!"

SUBT
 | SUBTRACTION
{subt:expr1,expr2}
{subt:expr1,expr2,expr3...}

Returns the difference of the values expr1 and expr2. If more than two args are given, all values are
subtracted from the first value in sequence. For example: {subt:10,3,2,4} would be read as 10 - 3
- 2 - 4, and it would return a result of 1.

TELL

{tell:string}
{tell:string,player}

If passed only a string, tells the user that string. If passed both a string, and a player dbref, it will tell the
given player the message. This returns the message that was sent. If the trigger isn't a room, or an exit on a

room, and if the message doesn't already begin with the user's name, then the user's name will be prepended
to the message. The two exceptions to this are that if the messages is being sent to the owner of the trigger, or
to the user, then the user's name will not be prepended.

TESTLOCK

{testlock:obj,prop}
{testlock:obj,prop,who}
{testlock:obj,prop,who,def}

Tests the lock property prop, on obj against the given player who. If no who argument is given, then it
checks the lock against the using player. If a def argument is given, then the lock will default to that value,
if there is no lock property of the given name on the given object. Returns true if the lock is locked against
the player.

TIME

{time}
{time:timezone}

Returns a time string in the 24hr form hh:mm:ss. If the timezone argument is given, then it offsets the
time returned by that number of hours.

TIMESTR

{timestr:secs}

Given a time period in seconds, this will return a concise abbreviated string representation of how long that
time was. This might return a value like "9d 12:56" for 9 days, 12 hours, and 56 minutes.

TIMESUB

{timesub:period,offset,listname}
{timesub:period,offset,listname,object}

This is sort of like {list}, except that it will only return one line of the given named property list. The
line it chooses depends on the time. The period is the length of time, in seconds, that it takes for
{timesub} to cycle through the entire list. The offset is the number of seconds to offset into the time
period, if you actually need to synchronize the {timesub} with something. The offset usually is just left at
zero. If the object argument is not passed, it looks for the list on the trigger. What this all means, is that if you
have, for example, a period of 3600 (one hour), an offset of zero, and a property list that has six items in it,
then {timesub} will return the first line of the property list during the first ten minutes of the hour, the
second line during the next ten minutes, and so on, until it returns the last line during the last ten minutes of
the hour. Then it returns the first line for the beginning of the next hour. Here's an example:

 {timesub:86400,0,_sunmoon}

This example will show different property list lines, depending on the time of day. The period is 86400

seconds, which is one day. If the property list has 24 items in it, then a different line will be returned for each
hour of the day.

TOLOWER

{tolower:string}

Returns a copy of string, with all uppercase characters converted to lowercase.

TOUPPER

{toupper:string}

Returns a copy of string, with all lowercase characters converted to uppercase.

TYPE

{type:obj}

Returns the type of an object. The possible values are: Bad, Room, Exit, Thing, Player, and
Program.

TZOFFSET

{tzoffset}

Returns local time zone offset from GMT in seconds.

USECOUNT

{usecount:obj}

Returns the usecount of obj.

V
 | VARIABLE | &
{v:var}
{&var}

These are two ways of trying to do the same thing. They return the value of the named variable var. If there
is no variable with the given name currently defined, then this gives an error stating as much. Variables can
be defined either with the {with:} function or within a looping command.

VERSION

{version}

Returns the version string for the server.

WHILE

{while:check,expr}

This is a looping structure. It evaluates check, and if it evaluates true, then it evaluates expr, and repeats
the process. If check evaluates false, then the loop is exited. This returns the result of the last evaluation of
expr.

WITH

{with:var,val,expr..}

This defines a new variable with the given name, and sets its value to the given val. Up to 7 expr's are
allowed, but the only value returned to {with}'s caller, is the value returned by the evaluation of the last
expr. If there is already a variable of the same name, then this command will override that variable, for the
duration of the {with:} command. The new variable is only valid to use within the confines of the
{with:} command, and it will go away after the command completes. This provides scoped variables quite
effectively. Note: There can be no more than 32 variables defined at any one time, total. This includes
variables that are defined within macros, or properties or lists that are executed with {exec:} or
{lexec:}. Here's an example to illustrate the scope of variables inside of {with:} commands:

 {prop:_mydesc} <- {&people} not defined
 {with:people,{contents:here,players}, <- Defining. Not available yet
 {if:{count:{&people}}, <- It's usable now
 The players awake here are
 {lit: } <- just puts in a space
 {commas:{&people},{lit: and },
 who,{name:{&who}} <- uses {&who} as temp var
 } <- {&who} no longer defined
 }
 } <- {&people} no longer defined

XOR
 | EXCLUSIVEOR
{xor:expr1,expr2}

Returns true if expr1 or expr2 evaluate as true, but false if both do. Otherwise, this returns false.

3.2 Overview: MUF
MUF — a dialect of FORTH — is one of two programming languages implemented on all MUCKs, the other
being MPI. The speed and efficiency of MUF make MUCKs readily user-extensible: powerful new commands
and programs can be soft-coded into the database. Although the only place you'll be able to use it is on
MUCKs, MUF is a real programming language: once you've learned it, you can truthfully say you know how
to program computers, and concepts and habits of thought you pick up as a Mucker will be useful in learning
languages with widespread RL applications.

MUF is an extensible, structured, stack-based, compiled language.

Extensible:
If there isn't a command to do what you want, you can make one.

Structured:
A MUF program consists of 'functions' or 'words' ... blocks of code that are executed as a unit and 'call'
each other as needed. It doesn't matter (to the computer) whether you put all your code on one long line
or every word on a new line (it matters a lot to people who are trying to read your code). White space
(any combination of spaces, tabs, or new lines) separates words, and the order of the words and their
positioning between the symbols that start and end a function are what matter. The program is
composed of 'functions' or 'words' that each perform a specific task.

Stack-based:
You do everything by manipulating a stack, a set of 'last-in-first-out' values like HP calculators use.

Compiled:
You write a program that people can read, with semi-normal words like pop and rot and
remove_prop (this is your source code) and then a part of the server, the MUF compiler, turns it into
arcane stuff that computers can read (this is your object code). You won't ever see the object code.

Before You Begin:
In order to program in MUF, you'll need a Mucker bit, a flag that lets you use the MUF editor. A wiz will
need to set this, so page one and ask. There are three levels of mucker bits, M1 (apprentice), M2
(journeyman), and M3 (master) (wizards are considered M4).

As a new Mucker, you'll get an M1 bit. M1's have access to most of the functions, but not all; output from an
M1 program to anyone other than the owner of the program is prefaced by the user's name; and the program
won't be able to send messages to or retrieve information from remote locations. An M1 bit is essentially MUF
with training wheels. Once you've written a couple M1 programs that work, you can show them to a wiz and
ask for an M2 bit. M2's can't use all the functions, but you can make truly useful programs at the M2 level:
bulletin board or book programs, specialized exits and locks, morphing programs, etc.

M3 bits are dandy to have, but they are hard to come by on large mucks, and for good reason. An M3 bit gives
its owner considerable power over the data base, approaching that of a wizard: an inept or malintentioned M3
coder could cause serious problems. In fact, M3's are in some ways more of a security risk than Wizard bits:
wiz bits are more powerful, but all commands issued by a wizard are logged; this is not necessarily true of
M3 programs and players. To get an M3 bit on a well established MUCK, you will need to write some very
good programs and have shown yourself to be a trustworthy player over time. In general, it's easier to get an
M3 on newer, smaller MUCKs.

There are two commands that are good to know Before you Begin. One is man, the online manual
command. Typing man pop would tell you about the MUF primitive pop. The other is @q. This aborts a
foreground program you have running. If you find yourself in a run-away or locked-up program, type @q to
get out of it.

3.2.1 Mucker Levels
There are — in effect, if not literally — five MUF permission levels: 0 to 4.

Mucker Level 0 refers to players who do not have a Mucker or Wizard bit. They cannot create new programs
or use the MUF editor. MUF programs owned by them run as if they were Level 1 Muckers.

Mucker Level 1 players are 'apprentices'. They can use the editor and create M1 programs. Their programs
can only retrieve information about objects in the same room. For example, #123 name will fail if object
#123 is not in the same room as the user running the program. M1 programs always run as if they are set
Setuid. Output (from NOTIFY, NOTIFY_EXCEPT, and NOTIFY_EXCLUDE) can only go to players in the
same room, and will usually (depending on server compiler directives) be prefaced with the user's name.
They cannot use ADDPENNIES. M1 programs have an instruction-count limit of about 20,000 instructions.

Mucker Level 2 players are 'journeymen'. They can use most but not all MUF primitives. They can create M2
programs, and set programs they own M2 or M1. M2 programs are limited to about 80,000 instructions.

Mucker Level 3 playes are 'masters'. They can set programs they own M1, M2, or M3. They can use the
connection information primitives (CONDBREF, ONLINE, etc.), can read the EXITS list of any room, can
use NEXTOBJ on objects, can use NEWROOM, NEWOBJECT, NEWEXIT, and COPYOBJ without
limitations, can use QUEUE and KILL, and can override the permissions restrictions of MOVETO. There is
no absolute limit on M3 processes' intruction count.

Wizards and wizbitted programs are effectively Mucker Level 4. They can set programs they own M1, M2,
or M3, and W or !W. They can use primitives not available to other Mucker Levels, including RECYCLE,
CONHOST, FORCE, and SETOWN. All properties are readable and settable by Wizard programs.

The effective Mucker Level of a program is its own Mucker Level or its owner's Mucker Level, whichever is
lower. There is one exception: Programs owned by wizards who do not have a Mucker bit set run at Mucker
Level 2, unless the program is set Wizard.

To set Mucker bits, use just the number as a flag: @set cashmere=2.

MUF Libraries
Libraries allow MUF programs to share code: frequently used, generic routines can be written and compiled
once, in a library; other programs can use these routines by using an $include statement to include the
library. Once a library has been included, any routines defined in the library can be used in the local program.
A number of standard libraries are available, and will be needed to compile a number of the standard MUF
programs. Section 3.2.6, the MUF Library Reference, gives comprehensive documentation of routines
available from the standard libraries. In addition, you can create your own libraries.

Using Library Functions:

To use library functions in your programs, include the library or libraries needed by placing an $include
statement in your code, before any library functions are called, and outside of any functions. (Most
programmers put all $include statements at the top of their programs). Libraries are specified by their
registered names. For example, to use the reflist-handling functions from lib-reflist, you would put the
following line of code in your program:

 $include $lib/reflist

At any point after this line, functions defined in lib-reflist can be used in your program.

To list the the libraries available on your MUCK, type @register lib. To view a library's
documentation, type @view $lib/<library name>.

Creating Libraries
Creating libraries is relatively straightforward. You simply write code that could be useful to include in
multiple programs, make individual functions available to other programs with the public declaration, and
set some properties that give the server the information it will need to coordinate between programs and
programmmers the information they will need in order to make good use of your library. The remainder of
this page illustrates these by example: we'll create, configure, and use lib-sort, a library of sorting functions.
Take glance at the file now, and refer to it as we discuss its implementation.

Step 1: Create a program with useful, generic routines. Programs frequently need to sort data, but neither
MUF nor the standard libraries include functions for doing this. Lib-sort addresses this need. It uses a simple
bubble sort to sort a stack range of items. (A 'stack range' is a group of items on the stack and an integer
indicating how many items are to be considered part of the range. A more complete discussion of stack
ranges is available in Section 3.2.6.) For example, if we had five strings on the stack that we wanted to sort
alphabetically...

 "mink" "timber wolf" "otter" "woolly pterydactyl" "linsang"

... we could do so by putting an integer that gives the 'count' of the range on top of the stack, and then calling
lib-sort's sort function...

 "mink" "timber wolf" "otter" "woolly pterydactyl" "linsang" 5
 sort

Lib-sort would return the five items in alphabetical order, with the count integer removed:

 "linsang" "mink" "otter" "timber wolf" "woolly pterydactyl"

Lib-sort provides two public functions: sort, which returns the range sorted in ascending order, and sort-
d, which returns the range in descending order. All items in the range must be of the same data type
(string, integer, or dbref). Lib-sort looks at the data type of the top item in the range to determine
how to sort the range.

(A bubble sort is not the most efficient algorithm: it is relatively slow when sorting large sets (though it is
probably the most efficient algorithm for very small sets), and it does not finish any faster if the data is
already sorted or mostly sorted. Other algorithms, such as a qsort, would be better in many situations.
Implementing a sorting library with more sophisticated algorithms would be a good advanced MUF
programming exercise.)

Step 2: Declare the appropriate public functions. Lib-sort includes a total of eight functions, but only two of
them are meant to be called by other programs: sort and sort-d. These two functions look at the stack
range and call one of the remaining six functions, which sort, ascending or descending, according to
datatype. So, sort and sort-d need to be declared public, and the others should not be. We do this by
putting the lines...

 public sort
 public sort-d

...in the program, after the functions are defined, outside of any function definitions. Here, we put them after

file:///home/riddochc/src/muckman/lib-#sort

each function. Another common convention is to put all the public declarations at the end of the program.

Step 3: Document the program. Lib-sort uses the most common documentation method, a header comment.
Lines 1 to 49 explain how to install and use the program.

Step 4: Set the program's _docs property to allow users to @view the documentation: @set lib-
sort=_docs:@list $lib/sort=1-49 .

Step 5: Set the program Link_OK, so that other programs can access its public functions and users can view
its documentation with @view: @set lib-sort=L.

Step 6: Configure the interface for each public function by setting a _defs/ property. These properties give
the server the information it needs to match statements in local programs to public functions in the library.

 @set lib-sort=_defs/sort:"$lib/sort" match "sort" call
 @set lib-sort=_defs/sort-d:"$lib/sort-d" match "sort-d" call

That's it!

3.2.3 MUF Macros
As with MPI, you can define macros snippets of reusable code called by a single statement with � � MUF.
In fact, viewing defined macros and defining new ones is easier with MUF than with MPI.

To view, define, or delete MUF macros, you need to be in the MUF editor. You can use any program when
invoking the editor; the defined macros are available to all programs.

Viewing Macros: In the editor, type either s (to see the long version of macro definitions) or a (to see the
abridged version).

(The example output below is slightly reformatted.)

> @edit tinker.muf
> s

 abs Jessy (i -- i') dup 0 < if -1 * then

 after_match Jessy (d --) dup #-1 dbcmp swap #-2 dbcmp or if exit then

 atodbref Jessy (s -- d) "" "#" subst atoi dbref

 .
 . (.... entries omitted)
 .

 wizard? Jessy (-- i) "W" flag?

 yes? Jessy (s -- i) (checks that string starts with y) 1
 strcut pop "y" stringcmp not

 End of list.

> a
abs addpropstr after_match atodbref confirm
debug-line debug-off debug-on me_wiz? no?
notify_nospam otell pmatch puppet? quote
rstrfmt spc80 split tell wizard?
yes?

 End of list.

Defining Macros: In the editor (but not while you are inserting code), type def <macro name> <macro
definition>.

> @edit tinker.muf
> def nukestack (x..x' --) begin depth while pop repeat
 Entry created.

Deleting Macros: Only wizards can delete macros, so, if you are a non-wizard Mucker entering macros, be
sure you have it right when you enter it. If you are a wizard and want to delete a macro, type <macro
name> kill while in the editor.

> @edit tinker.muf
> nukestack kill
 Macro entry deleted.

3.2.4 MUF Compiler Directives
Compiler directives — additional instructions that the server executes before or while compiling your code
— were introduced in the MUF Overview. Below is a more complete reference of the available compiler
directives.

$define <definition name> <definition> $enddef

This redefines <definition name> such that all instances of it will be replaced with <definition>
when the program is compiled.

$undef <defname>

This undefines <defname>, making it an undefined value for the compiler. Its primary use is to allow
compiler directives to be included in the source code without their being invoked by the compiler. For
example, you might have a program that should be compiled differently if running at Mucker Level 3 rather
than Mucker Level 2. You could include the following lines in your code...

$define MLev2 (* Undefine this if the program is set M3 *)
$undef MLev3 (* Define this if the program is set M2 *)

This way, the person compiling the program would have an example of each valid form, even though only
one is being invoked.

$echo <string>

This outputs <string> to the person compiling the program, at compile time. Example:

$echo Compiling multi-guest.muf...
$echo See header comment for configuration instructions.

__version

This is a pre-defined macro that is replaced at compile time with the current server version. It would be
useful for tests to ensure that the server version can support all the primitives used in your program. The
replacement string will be the same as that returned by the VERSION primitive.

$ifdef <condition>
 <compile-if-true>
$else
 <compile-if-false>
$endif

$ifndef <condition>
 <compile-if-true>
$else
 <compile-if-false>
$endif

These cause conditional compilation of blocks of code, based on <condition>. <Condition> can be a
$defined name, or a test that consists of a comparator such as =, <, or > and a test value, all in one word,
without whitespace. The else clause is optional. Comiler directives are nestable. Example:

$ifndef __version>Muck2.2fb3.5
 $define envprop .envprop $enddef
$endif

$define ploc

$ifdef proplocs .proploc $else $endif $enddef

$include <program>

This creates $defines based on the _defs/ propdir of <program>. For example, if object #345 had
the following properties...

/_defs/desc: "_/de" getpropstr
/_defs/setpropstr: dup if 0 addprop else pop remove_prop then
/_defs/setpropval: dup if "" swap addprop else pop remove_prop then
/_defs/setprop: dup int? if setpropval else setpropstr then

... then a program that contains the line $include #345 would be compiled such that all instances of
desc, setpropstr, setpropval, and setprop would be preplaced with their respective definitions
on #345.

Escaped statements will be read literally, rather than interpreted and expanded by the compiler, which allows
primitives and macros to be included in $defines. Example:

$define addprop over over or if \addprop else pop pop remove_prop
$enddef

In this case, ADDPROP will be expanded in the program itself, but the compiler will not recursively expand
it... it will call the actual, in-server ADDPROP.

3.2.5 MUF Reference
Note: Some listed functions are only available in MUCK server version fb6.0 and following. Such cases are
marked with the notation '(fb6.0+)' in individual entries.

Array-Handling Primitives:
array_count array_delitem array_delrange array_explode array_first
array_getitem array_getrange array_insertitem array_insertrange array_keys
array_last array_make array_make_dict array_ndiff array_next
array_nintersect array_notify array_nunion array_prev array_setitem
array_setrange array_vals

Bitwise Operators:
bitand bitor bitshift bitxor

Connection-Handling Primitives:
awake? concount condbref conidle contime
conhost conboot connotify condescr
descrflush descriptors online nextdescr

Control Structures:
abort begin break call continue
for else execute exit if
jmp kill repeat then until
while

Data Conversion Primitives:
atoi ctoi dbref float ftostr
int intostr itoc stod strtof
variable

Error-Handling Primitives:
clear clear_error error? error_bit error_name
error_num error_str is_set? set_error

Input/Output Primitives:

notify notify_except notify_exclude read tread

Lock-Handling Primitives:
getlockstr locked? parselock prettylock setlockstr
testlock unparselock

Math and Comparison Primitives:
+ - / % < > = <= >=
acos and asine atan atan2
ceil cos dbcmp dist3d exp
fabs floor frand getseed inf
log log10 modf not number?
or pi polar_to_xyz pow random
round setseed sine sqrt srand
strcmp stringcmp strncmp tan xyz_to_polar

Message-Management Primitives:
desc drop fail name odrop
ofail osucc setdesc setdrop setfail
setname setodrop setofail setosucc succ

Miscellaneous Primitives:
addpennies checkargs checkpassword contents copyobj
dbtop exits flag? force getlink
interp location match mlevel movepennies
moveto newexit newobject newroom next
nextowned owner part_pmatch pennies pmatch
prog recycle rmatch set setlink
setown stats sysparm textattr trig
version

Multitasking:
background bg_mode fg_mode fork foreground
kill mode pr_mode preempt queue
setmode sleep

Property-Handling Primitives:
addprop envpropstr getlockstr getpropfval getpropstr
getpropval nextprop propdir? remove_prop

Stack-Handling Primitives:
depth dup dupn ldup lreverse
over pick pop popn put
reverse rot rotate swap

String-Handling Primitives:
explode fmtstring instr instring midstr
pronoun_sub tolower toupper rinstr rinstring
smatch split strcat strcut strdecrypt
strencrypt stringpfx strip striplead striptail
strlen subst unparseobj

Time Primitives:
systime timesplit timefmt date gmtoffset
time timestamps

Type-Checking Primitives:
array? dbref? dictionary? exit? flag?
float? int? ispid? lock? ok?
player? program? propdir? number? room?
string? thing?

Variable-Handling Primitives:
@ ! localvar lvar public
var variable

+ - * / % (x1 x2 -- i)

These words perform arithmetic operations on integer and floating point numbers.

+ is addition: x1 + x2
- is subtraction: x1 - x2
* is multiplication: x1 times x2, or x1 * x2
/ is division: x1 divided by x2, or x1 / x2
% is modulo: remainter of x1 / x2, or x1 % x2

The result of an integer division is truncated of fractions.

Modulo cannot be used on floating point values: see MODF.

All math operations may also be performed where x1 is a variable type. This is mainly useful in calculating
an offset for a variable array.

< > = <= >= (x1 x2 -- i)

Perform relational operations on integers or dbrefs x1 and x2. These return i as 1 if the expression is true,
and i as 0 otherwise.

@ (v -- x)

Retrieves variable v's value x. (Pronounced 'fetch'.)

! (x v --)

Sets variable v's value to x. See also VARIABLE, VAR, LVAR, LOCALVAR, and miscellaneous.
(Pronounced 'store'.)

ABORT (s --)

Aborts the MUF program with an error. For example, '"Bad vibes." abort' would stop the MUF
program and tell the user a message like:

 Programmer error. Please tell Revar the following message:
 #1234 (line 23) ABORT: Bad vibes.

ACOS (f -- f')

Returns the inverse cosine of f. (fb6.0+)

ADDPENNIES (d i --)

d must be a player or thing object. Adds i pennies to object d. Without Wizard permissions, addpennies
may only give players pennies, limited to between zero and MAX_PENNIES.

ADDPROP (d s1 s2 i --)

Sets property associated with s1 in object d. Note that if s2 is null "", then i will be used. Otherwise, s2
is always used. All four parameters must be on the stack; none may be omitted. If the effective user of the
program does not control the object in question and the property begins with an underscore '_', the
property cannot be changed. The same goes for properties beginning with a dot '.' which cannot be read
without permission. If you store values, you must ensure that it they are never zero. Otherwise, when the user
stores a non-zero number into the string field, (users may only access string fields) the next time TinyMUCK
is dumped and loaded up again, the value field will be replaced with atoi (string field). If it is necessary to
store zero, it is safer to just add 1 to everything.

ADDRESS? (? -- i)

Returns true if the top stack item is a function address.

AND (x y -- i)

Performs the boolean 'and' operation on x and y, returning i as 1 if both i1 and i2 are TRUE, and
returning i as 0 otherwise.

ARRAY? (? -- i)

Returns true if the top item on the stack is an array. (fb6.0+)

ARRAY_COUNT (a -- i)

Returns a count of the items in an array. (fb6.0+)

ARRAY_DELITEM (a @ -- a')

Removes a given item from an array. (fb6.0+)

ARRAY_DELRANGE (a @ @ -- a')

Deletes a range of items from an array, between two indexes, inclusive. Returns the resulting array. (fb6.0+)

ARRAY_FIRST (a -- @ i)

Returns first the index in array, and a boolean. Bool is false if no items are in array. (fb6.0+)

ARRAY_EXPLODE (a -- {@ ?})

Explodes array into stackrange of index/value pairs, such as "idx0" "val0" "idx1" "val1" 2.
(fb6.0+)

ARRAY_GETITEM (a @ -- ?)

Gets a given item from an array. (fb6.0+)

ARRAY_GETRANGE (a @ @ -- a')

Gets range between two indexes (inclusive) from an array, returning it as an array. (fb6.0+)

ARRAY_INSERTITEM (? a @ -- a')

Inserts a given value into an array. (fb6.0+)

ARRAY_INSERTRANGE (a1 @ a2 -- a')

Inserts items from array a2 into a1, starting at the given index. Returns the resulting array. (fb6.0+)

ARRAY_KEYS (a -- {@})

Returns the keys of an array in a stackrange. (fb6.0+)

ARRAY_LAST (a -- @ i)

Returns last index in array, and a boolean. Bool is false if no items are in array. (fb6.0+)

ARRAY_MAKE ({?} -- a)

Makes a list array from a stackrange. (fb6.0+)

ARRAY_MAKE_DICT ({@ ?} -- a)

Makes a dictionary associative array from a stackrange of index/value pairs. (fb6.0+)

ARRAY_NDIFF ({a} -- a)

Returns a list array, containing the difference of all the given arrays. Multiple arrays are consecutively
processed against the results of the previous difference, from the top of the stack down. (fb6.0+)

ARRAY_NINTERSECT ({a} -- a)

Return a list array, containing the intersection of all the given arrays. Multiple arrays are consecutively
processed against the results of the previous intersection, from the top of the stack down. (fb6.0+)

ARRAY_NEXT (a @ -- @ i)

Returns the next index in array, following index a, and a boolean. Bool is false if no items left. (fb6.0+)

ARRAY_NOTIFY (a1 a2 --)

Notifies all dbref items in array a2 with all string items in array a1. (fb6.0+)

ARRAY_NUNION ({a} -- a)

Returns a list array, containing the union of values of all the given arrays. (fb6.0+)

ARRAY_PREV (a @ -- @ i)

Returns previous index in array, following index a, and a boolean. Bool is false if no items left. (fb6.0+)

ARRAY_SETITEM (? a @ -- a')

Overwrites item a from array @ with value ?. (fb6.0+)

ARRAY_SETRANGE (a1 @ a2 -- a')

Sets items in list a1 to values from list a2, starting at the given index. Returns the resulting array. (fb6.0+)

ARRAY_VALS (a -- {?})

Returns the values of an array in a stackrange. (fb6.0+)

ASINE (f -- f')

Returns the inverse cosine of f. Operates in the range of -pi/2 to pi/2. (fb6.0+)

ATAN (f -- f')

Returns the inverse tangent of f. Operates in the range of -pi/2 to pi/2. (fb6.0+)

ATAN2 (fy fx -- f)

Equivalent to ATAN, but takes the signs of the arguments into account, and avoids division-by-zero errors.
(fb6.0+)

ATOI (s -- i)

Turns string s into integer i. If s is not a string, then 0 is pushed onto the stack.

AWAKE? (d -- i)

Passed a player's dbref, returns the number of connections they have to the game. This will be 0 if they are
not connected.

BACKGROUND (--)

A way to turn on multitasking. Programs in the background let the program user go on and be able to do
other things while waiting for the program to finish. You cannot use the READ command in a background
program. Once a program is put into background mode, you cannot set it into foreground or preempt mode. A
program will remain in the background until it finishes execution.

BEGIN (--)

Marks the beginning of begin-until or begin-repeat loops.

BG_MODE (-- i)
pr_mode
fg_mode

These are all standard built in defines. They are used with MODE and SETMODE to show what mode the
program is running in, or to set what mode it will run in. For example, MODE returns an integer on the stack,
that you can compare against pr_mode, fg_mode, or bg_mode, to determine what mode the program is
in. pr_mode is defined as 0, fg_mode is defined as 1, and bg_mode is defined as 2.

BITOR (x x -- i)

Does a mathematical bitwise or.

BITAND (i i -- i)

Does a mathematical bitwise and.

BITSHIFT (i i -- i)

Shifts the first integer by the second integer's number of bit positions. This works like the C << operator. If
the second integer is negative, it is equivalent to >>.

BITXOR (i i -- i)

Does a mathematical bitwise exclusive or.

BREAK (--)

Breaks out of the innermost loop. Jumps execution to the instruction after the UNTIL or REPEAT for the
current loop.

CALL (d -- ??)

Calls another program d. d must have been compiled already. d will inherit the values of ME, LOC,
TRIGGER, and all other variables.

CALLER (-- d)

Returns the dbref of the program that called this one, or the dbref of the trigger, if this wasn't called by a
program.

CEIL (f -- f)

Returns the next highest integer number as a float. (fb6.0+)

CHECKARGS (??? s --)

Takes a string argument that contains an expression that is used to test the arguments on the stack below the
given string. If they do not match what the expression says should be there, then it aborts the running
program with an appropriate Program Error message. The expression is formed from single character
argument tests that refer to different argument types. The tests are:

a - function address
d - dbref (#-1, #-2, #-3 are okay)
D - valid, non-garbage dbref (#-1, #-2 NOT allowed #-3 is okay)
e - exit dbref (#-1, #-2 allowed)
E - exit dbref (#-1, #-2 NOT allowed)
f - program dbref (#-1, #-2 allowed)
F - program dbref (#-1, #-2 NOT allowed)
i - integer
p - player dbref (#-1, #-2 allowed)
P - player dbref (#-1, #-2 NOT allowed)
r - room dbref (#-1, #-2 allowed) (#-3 is a room)
R - room dbref (#-1, #-2 NOT allowed) (#-3 is a room)
s - string
S - non-null string
t - thing dbref (#-1, #-2 allowed)
T - thing dbref (#-1, #-2 NOT allowed)
v - local or global variable
? - any stack item type

Tests can be repeated multiple times by following the test with a number. For example, "i12"
checkargs would test the stack for 12 integers.

The last test in the string expression will be done on the top stack item. Tests are done from the top of the
stack down, in order, so the last test that fails in a string expression will be the one that the Program Error
will be given for. ie: "sdSi" checkargs will test that the top stack item is an integer, then it tests that
the next item down is a non-null string, then it tests the third item from the top to see if it is a dbref, and lastly
it tests to make sure that the 4th item from the top is a string.

Spaces are ignored, so s d i is the same as sdi. However, multipliers are ignored if they follow a space,
so s 4d i is also the same as sdi. This is because you are basically telling it to repeat the space 4 times,
and since spaces are ignored, it has no effect.

If you have a function that takes a stack item of any type, you can use the ? test. ? will match a string,
integer, dbref, or any other type.

Since sometimes arguments are passed in ranges, such as the way that the explode primitive returns multiple
strings with an integer count on top, there is a way to group arguments, to show that you expect to recieve a
range of that type. For example, "{s}" checkargs would test the stack for a set of strings like "first"
"second" "third" "fourth" 4 where the top stack item tells how many strings to expect within the
range.

Sometimes a function takes a range of paired arguments, such as: "one" 1 "two" 2 "three" 3
"four" 4 4 where the count on the top of the range refers to the number of pairs. To test for the range
given above, you would use "{si}" checkargs to tell it that you want to check for a range of paired
strings and integers. You can group as many argument tests together in a range as you would like. ie: you
could use {sida} as an expression to test for a range of related strings, integers, dbrefs, and function
addresses.

Since the argument multipliers refer to the previous test OR range, you can test for two string ranges with the
test "{s}2" checkargs. ie: It would succeed on a stack of: "one" "two" "three" 3 "four"
"five" 2. "{s2}" checkargs, however, would test for one range of paired strings. ie: It would
succeed with a stack of: "one" "1" "two" "2" "three" "3" 3.

If, for some reason, you need to pass a range of ranges to a function, you can test for it by nesting the braces.
ie: "{{s}}" checkargs.

Now, as one last example, the primitive notify_exclude, if we were to test the arguments passed to it
manually, would use the test "R{p}s" checkargs to test for a valid room dbref, a range of player dbrefs
or #-1s, and a string.

CHECKPASSWORD (d s --)

Returns true if the password of player d. (wizbit only)

CLEAR (--)

Clears all error flags. See also CLEAR_ERROR, ERROR?, ERROR_STR, ERROR_NAME, ERROR_BIT,
ERROR_NUM, IS_SET?, and SET_ERROR (fb6.0+)

CLEAR_ERROR (i --)

Clears error flag i. See also CLEAR, ERROR?, ERROR_STR, ERROR_NAME, ERROR_BIT, ERROR_NUM,
IS_SET?, and SET_ERROR (fb6.0+)

CONBOOT (i --)

Takes a connection number and disconnects that connection from the server. (wizbit only)

CONCOUNT (-- i)

Returns how many connections to the server there are. (Requires Mucker Level 3)

CONDBREF (i -- d)

Returns the dbref of the player connected to this connection. (Requires Mucker Level 3)

CONDESCR (i -- i)

Takes a connection number and returns the descriptor number associated with it. (Requires Mucker Level 3)
See DESCRIPTORS, DESCRCON.

CONHOST (i -- s)

Returns the hostname of the connection. (wizbit only)

CONIDLE (i -- i)

Returns how many seconds the connection has been idle. (Requires Mucker Level 3)

CONNOTIFY (i s --)

Sends a string to a specific connection to the server. (Requires Mucker Level 3)

CONTENTS (d -- d')

Pushes the dbref of the first thing contained by d. This dbref can then be referenced by next to cycle
through all of the contents of d. d may be a room or a player.

CONTIME (i -- i)

Returns how many seconds the given connection has been connected to the server. (Requires Mucker Level
3)

CONTINUE (--)

Jumps execution to the beginning of the current loop.

COPYOBJ (d -- d')

Creates a new object (returning d' on top of the stack), that is a copy of object d. Each program is allowed
to create only one new object per run.

COS (f -- f')

Returns the cosine of f. Operates in the range of -pi/4 and pi/4. (fb6.0+)

CTOI (s -- i)

Converts the first character in a string to its ASCII equivalent integer. (fb6.0+)

DATE (-- i i i)

Returns the monthday, month, and year. For example, if it were February 6, 1992, date would return 6 2
1992 as three integers on the stack.

DBCMP (d1 d2 -- i)

Performs comparison of database objects d1 and d2. If they are the same object, then i is 1, otherwise i is
0.

DBREF (i -- d)

Converts integer i to object reference d.

DBREF? (x -- i)

Returns true if x is a dbref.

DBTOP (-- d)

Returns the dbref of the first object beyond the top object of the database. dbtop ok? would return a false
value.

DEPTH (-- i)

Returns the number of items on the stack.

DESC (d -- s)

Takes object d and returns its description (@desc) string field.

DESCRCON (i -- i)

Takes a descriptor and returns the associated connection number, or 0 if no match was found. See
DESCRIPTORS, CONDESCR.

DESCRFLUSH (i --)

Flushes output text on the given descriptor. If -1 is passed as the descriptor, it flushes output on all
connections.

DESCRIPTORS (d -- ix...i1 i)

Takes a player dbref, or #-1, and returns the range of descriptor numbers associated with that dbref (or all
for #-1) with their count on top. Descriptors are numbers that always stay the same for a connection, while a
connection number is the relative position in the WHO list of a connection. See DESCRCON, CONDESCR.

DICTIONARY? (? -- i) Returns true if the top item on the stack is a dictionary array. (fb6.0+)

DIST3D (fx fy fz -- f)

Returns the distance of XYZ coords (fx, fy, fz) from the origin. (fb6.0+)

DROP (d -- s)

Takes object d and returns its drop (@drop) string field.

DUP (x -- x x)

Duplicates the item at the top of the stack.

DUPN (?n...?1 i -- ?n...?1 ?n...?1)

Duplicates the top N stack items. See also LDUP.

ELSE (See IF)

ENVPROPSTR (s d -- s d)

Takes a starting object dbref and a property name and searches down the environment tree from that object
for a property with the given name. If the property isn't found, it returns #-1 and a null string. If the property
is found, it will return the dbref of the object it was found on, and the string value it contained.

ERROR? (-- i)

Returns true if any error flags have been set. See also CLEAR, CLEAR_ERROR, ERROR_STR,
ERROR_NAME, ERROR_BIT, ERROR_NUM, IS_SET?, and SET_ERROR (fb6.0+)

ERROR_BIT (s -- i)

Given the error flag string name, returns the bit identifier. See also CLEAR, CLEAR_ERROR, ERROR?,
ERROR_STR, ERROR_NAME, ERROR_NUM, IS_SET?, and SET_ERROR (fb6.0+)

ERROR_NAME (i -- s)

Given the error flag bit identifier, returns the string name for the error flag. See also CLEAR,
CLEAR_ERROR, ERROR?, ERROR_STR, ERROR_BIT, ERROR_NUM, IS_SET?, and SET_ERROR
(fb6.0+)

ERROR_NUM (-- i)

Returns the total number of error flag types.

DIV_ZERO (0) Division by zero attempted
NAN (1) Result was not a number
IMAGINARY (2) Result would be imaginary
FBOUNDS (3) Floating-point inputs were out of range
IBOUNDS (4) Calculation resulted in an integer overflow or underflow
See also CLEAR, CLEAR_ERROR, ERROR?, ERROR_STR, ERROR_NAME, ERROR_BIT, IS_SET?, and
SET_ERROR (fb6.0+)

ERROR_STR (i -- s)

Given an error identifier, returns a user-readable error string. See also CLEAR, CLEAR_ERROR, ERROR?,
ERROR_NAME, ERROR_BIT, ERROR_NUM, IS_SET?, and SET_ERROR (fb6.0+)

EXECUTE (a -- ??)

Executes the function pointed to by the address a on the stack.

EXIT (--)

Exits from the word currently being executed, returning control to the calling word, at the statement
immediately after the invokation of the call (exiting the program if applicable).

EXIT? (d -- i)

Returns 1 if object d is an exit object, 0 if otherwise. See also player?, program?, room?, thing?,
ok?.

EXITS (d -- d')

Returns the first exit in the linked exit list of room/player/object d. This list can be transversed with next.

EXP (f -- f')

Returns e raised to the fth power. (fb6.0+)

EXPLODE (s1 s2 -- ... i)

s2 is the delimiter string, and s1 is the target string, which will be fragmented, with i pushed on top of the
stack as the number of strings s1 was broken into. For instance:

 "Hello world" " " explode

will result in

 "world" "Hello" 2

on the stack. (Note that if you read these items off in order, they will come out "Hello" first, then
"world".) For TinyMUCK 2.2, s2 may be any length. But "" (null string) is not an acceptable string for
parameter s2.

FABS (f -- f')

Returns the absolute value of f. (fb6.0+)

FAIL (d -- s)

Takes object d and returns its fail (@fail) string field.

FG_MODE (-- i)
pr_mode
bg_mode

These are all standard built in defines. They are used with MODE and SETMODE to show what mode the
program is running in, or to set what mode it will run in. For example, MODE returns an integer on the stack,
that you can compare against pr_mode, fg_mode, or bg_mode, to determine what mode the program is
in. pr_mode is defined as 0, fg_mode is defined as 1, and bg_mode is defined as 2.

FLAG? (d s -- i)

Reads the flag of object d, specified by s, and returns its state: 1 = on; 0 = off. Different flags may
be supported in different installations. flag? returns 0 for unsupported or unrecognized flags. You can
check the "interactive" flag to see if a player is currently in a program's READ, or if they are in the
MUF editor.

FLOAT (i -- f)

Converts i to a floating point. (fb6.0+)

FLOAT? (x -- i)

Returns true if x is a floating point. (fb6.0+)

FLOOR (f -- f)

Returns the next lowest integer number as a float. (fb6.0+)

FOREACH (a -- @ ?)

A loop construct for arrays. (fb6.0+)

FMTSTRING

FMTSTRING can be used to format complicated and long strings, as well as multi-lined (with embedded
new-lines) strings. These strings can consist entirely of user-specified text, formatted variable entries (as
values taken from the stack) or a combination of both.

The syntax for the format string is as follows:

 Format -+---+-%[-,|][+,][0][number][.number]type->+----->
 ^ | |
 | +-text---------------------------------->|
 | |
 +--+

Here, text can be any string that does not contain a % percent mark. This can be circumvented by replacing
any occurance of a % with %%. Number is any standard integer number, and type should be one of the
following single character identifiers (case is important):

• i - integer argument
• s - string argument
• ? - unknown type argument, will print a string stating what the
variable type is

• d - dbref number, in the form of #123
• D - dbref name reference; given a dbref, will print the associated
name for that object - terminates on bad reference

• l - pretty-lock, given a lock, will print the description
• f - float in xxx.yyy form
• e - float in x.yyEzz form
• g - shorter of forms e or f

A sample format string might look something like:

 "There are %i apples in the box."

If there was an integer value of '5' on the stack, this would return:

 "There are 5 apples in the box."

Variables can be formatted in very specific manners. For numeric entries, zero padding can be specified, as
well as control over the sign field. The total output field size for the variable can be specified, as well as the
minimum and maximum output lengths. Within a field, output can be left, right or center justified. The
[-,|] denotes the justification style to use. With no argument, a field will be right justified. A - will
change this to left and a | will make the field centered. If justification is to be used, the first numeric entry
must be specified. This denotes the total size of the variable field. If the output of the variable is not limited
by the maximum output number (see below), and the total size of the output is greater than the given field
width, justification will have no meaning. The second number field (after the period) specifies the maximum
number of characters to be printed for string variables, or the precision for numerics. When dealing with
numerics, the +, ' ' and '0' characters also can be used before the numeric fields. Specifing + will make

sure that a sign character is always printed before the number, wether it be a plus or a minus. Default is to
only print a minus sign as needed. If a ' ' is used instead of the +, a positive number will be prefaced with
a space instead of a plus-sign. When a 0 is given, zeros will be prefaced to the printed number in order to fill
the field width.

Tabbing and new-lines are allowed within the format strings as well. Tabs are defaulted to the equivilent of
eight spaces. Starting a new line with \r will reset the tab count. Unless explicitly reset with a new-line
character, tab will continue to count in mod-eight across the given output line. To insert a tab character, use \
t.

Variables should be on the stack 'under' the format string, and should be in order of reference. The first
variable referenced by the format string should be the next item in the stack, and so forth. (fb6.0+)

FOR (i1 i2 i3 -- i)

A loop structure, iterating from i1 to i2, with a step of i3. The current count is pushed onto the stack at
each iteration. FOR is used just like BEGIN, marking the beginning of a loop, with REPEAT or UNTIL
marking the end. However unlike other loops, FOR loops are limited to a ridiculously high nesting of 512,
enforced at runtime. The FOR primitive is actually (i1 i2 i3 --) and the FORITER primitive, used
to control the iteration count is (-- [i] i1) where i1 is a boolean signaling weather or not to continue,
and if continuing, i is the currnet count. The primitive FORPOP (--) cleans up the FOR nesting stack
by popping off the data for the nested loop.

FORCE (d s --)

Forces player d to do action s as if they were @forced. (wizbit only)

FOREGROUND (--)

To turn on multitasking, you can issue a foreground command. While a program is in foreground mode, the
server will be multitasking and handling multiple programs at once, and input from other users, but it will be
blocking any input from the user of the program until the program finishes. You cannot foreground a
program once it is running in the background. A program will stay in foreground mode until it finishes
running or until you change the mode.

FORK (-- i)

This primitive forks off a BACKGROUND (muf) process from the currently running program. It returns the pid
of the child process to the parent process, and returns a 0 to the child. If the timequeue was full, then it
returns a -1 to the parent process, and there is no child process. (Requires Mucker Level 3)

FRAND (-- f)

Returns a random number between 0 and 1. (fb6.0+)

FTOSTR (f -- s)

Converts a floating point value to a string. (fb6.0+)

GETLINK (d -- d')

Returns what object d is linked to, or #-1 if d is unlinked. The interpretation of link depends on the type of
d: for an exit, returns the room, player, program, action, or thing that the exit is linked to. For a player,
program, or thing, it returns its 'home', and for rooms returns the drop-to.

GETLINKS (d -- dn..d1 n)

Returns information on metalinks. Returns 0 when the obj is an unlinked exit, or if the obj is a program.
Returns 0 if the obj is a room with no dropto. Returns #-3 and a count of 1 if the dropto is linked to
HOME. (fb6.0+)

GETLOCKSTR (d -- s)

Returns the lock expression for the given object in the form of a string. Returns *UNLOCKED* if the object
doesn't have a lock set.

GETPROPSTR (d s -- s')

Retrieves string associated with property s on object d. The value stored in s must be a string. If the
property is cleared, "" (null string) is returned.

GETPROPFVAL (d s -- f)

Retrieves the floating point associated with property s on object d. The value stored in s must be a float. If
the property is cleared, <<<?>>> is returned.

GETPROPVAL (d s -- i)

s must be a string. Retrieves the integer value i associated with property s in object d. If the property is
cleared, 0 is returned.

GETSEED (-- s)

Returns the the current SRAND seed string. See also SETSEED and SRAND (fb6.0+)

GMTOFFSET (-- i)

Returns the machine's offset from GMT in seconds.

IF ... [else ...] then (x --)

Examines boolean value x. If x is TRUE, the sequence of statements after the if up until the then (or
until the else if it is present) performed. If it is fails, then these statements are skipped, and if an else is
present, the statements between the else and the then are performed. Control continues as usual at the
statement after the then. Note that checking the top of the stack actually pops it, so if you want to re-use it,
you should dup (see DUP) it before the if. For every IF in a word, there must be a then, and vice-versa. ELSE
is optional.

INF (-- f)

Returns an infinite result. (fb6.0+)

INSTR (s s1 -- i)

Returns the first occurrence of string s1 in string s, or 0 if s1 is not found. See also RINSTR.

INSTRING (s s1 -- i)

Returns the first occurrence of string s1 in string s, or 0 if s1 is not found. Non-case sensitive. See also
RINSTRING, INSTR, and RINSTR. This is an inserver define to tolower swap tolower swap
instr.

INT (x -- i)

Converts variable or object x to integer i.

INT? (x -- i)

Returns true if x is an integer.

INTERP (d d2 s -- ?)

Takes a program dbref to run, the trigger to use, and the top stack item string. It runs the MUF program with
the given trigger (with the given string on top of the stack) and returns the top stack item that the MUF
program exits with.

INTOSTR (x -- s)

x must be an integer or a dbref. Converts x into string s.

IS_SET? (i -- i)

Returns true if a specific error flag is set. See also CLEAR, CLEAR_ERROR, ERROR?, ERROR_STR,
ERROR_NAME, ERROR_BIT, ERROR_NUM, and SET_ERROR (fb6.0+)

ISPID? (i -- i)

Takes a process id and checks to see if an event with that pid is in the timequeue. It returns 1 if it is, and 0 if
it is not. NOTE: since the program that is running is not on the timequeue while it is executing, but only when
it is swapped out letting other programs run, pid ispid? will always return 0.

ITOC (i -- s)

Converts an integer to its ASCII equivalent character. If it is not a valid display character, a null string is
returned. (fb6.0+)

JMP (a --)

The JMP primitive takes an address like those supplied by 'funcname and moves execution to that point. It is
one early way that was used to do tail-recursion loops without as much overhead, and without failing due to
system stack overflows. It is mostly obsolete now, except that it's one of the three or four internal primitives
used to implement if-else-then and begin-while-repeat loops and such.

Example of JMP as a tail-recursion optimization:

 : countforever (i --)
 1 +
 dup intostr .tell
 'countforever jmp
 ;

A better ways to do the same thing with looping primitives would be:

 : countforever (i --)
 begin
 1 +
 dup intostr .tell
 repeat

 ;

KILL (i -- i)

Attempts to kill the given process number. Returns 1 if the process existed, and 0 if it didn't. Any process
can kill itself; killing other processes equires Mucker Level 3.

LDUP ({?} -- {?} {?})

Duplicates a stackrange on top of the stack. See also DUPN.

LOCALVAR (i -- l)

Takes an integer and returns the respective local variable. Similar to the VARIABLE primitive.

LOCATION (d -- d')

Returns location of object d as object d'.

LOCK? (? -- i)

Returns true if the top stack item is a lock. See also GETPROP, SETPROP, PARSELOCK,
UNPARSELOCK, PRETTYLOCK, and TESTLOCK.

LOCKED? (d d -- i)

Takes, in order, the dbref of the object to test the lock on, and the dbref of the player to test the lock against.
It tests the lock, running programs as necessary, and returns a integer of 0 if it is not locked against her, or 1
if it is.

LOG (f -- f')

Returns the natural log of f. f must be greater than zero. Very small values will return INF.

LOG10 (f -- f')

Returns the log base 10 of f. f must be greater than zero. Very small values will return INF.

LREVERSE (?n...?1 i -- ?1...?n i)

Reverses top N items, leaving count. See also REVERSE.

LVAR <varname>

This declares a variable as a local variable, that is local to a specific program. If another program calls this
program, the values of the local variables will not be changed in the calling program, even if the called
program changes them.

MATCH (s -- d)

Takes string s, first checks all objects in the user's inventory, then checks all objects in the current room, as
well as all exits that the player may use, and returns object d which contains string s. If nothing is found, d
= #-1. If ambiguous, d = #-2. If HOME, d = #-3.

MIDSTR (s1 i1 i2 - s2)

Returns the sub-string specified by positions i1 to i2 (inclusive) from within string s1.

MLEVEL (d -- i)

Returns the Mucker (or Priority) Level of the given object.

MODE (-- i)

Returns an integer denoting the current multitasking mode. This ignores BOUND bits on programs. The
integer this returns will be the same as one of those defined by the standard $defines bg_mode,
fg_mode, and pr_mode, being background, foreground, and preempt mode, respectively.
Also see PR_MODE.

MODF (f -- f f)

Returns the integral and fractional parts of f, both as floating point numbers. Ex:

 1.5 MODF

would put

 1.0 0.5

on the stack.

MOVEPENNIES (d1 d2 i --)

Moves i pennies from player/thing d1 to player or thing d2. (fb6.0+)

MOVETO (d1 d2 --)

Moves object d1 to object d2. MOVETO is affected by the following rules:

1. If the object being moved is !Jump_OK and is it being moved by someone other than the object's
owner, then the moveto fails.

2. If the object being moved is a person and either the source or destination rooms (if not owned by the
person being moved) are !Jump_OK, the moveto fails.

3. If the object being moved is not a player, is owned by the owner of either the source or destination
rooms, and either room where the ownership matches is !Jump_OK, the moveto fails.

The MOVETO succeeds under any other circumstances. MOVETO rules follow the permissions of the current
effective userid. MOVETO will run programs in the @desc and @succ/@fail of a room when moving a
player. If the object to be moved is an exit, the program must be M3.

NAME (d -- s)

Takes object d and returns its name (@name) string field.

NEWEXIT (d s -- d)

Takes a location and name and returns the new exit's dbref. Owner is the person running the program. (wizbit
only)

NEWOBJECT (d s -- d)

Takes a location and name and returns the new thing's dbref. Owner is the person running the program.
(wizbit only)

NEWROOM (d s -- d)

Takes the dbref of the parent and the name of the room. It returns the dbref of the created room. Owner is the
person running the program. (wizbit only)

NEXT (d -- d')

Takes object d and returns the next thing in the linked contents/exits list of d's location.

NEXTDESCR (i -- i)

Takes a descriptor number, and returns the next connected descriptor number. To get the first descriptor
number, use 1 condescr. Between these, you can step through the descriptors list. If you try to use
nextdescr on an invalid descriptor, it will return 0. If you have reached the end of the descriptor list, it
returns 0. (requires Mucker Level 3.)

NEXTOWNED (d -- d)

Returns the dbref of the first object owned by player d. When called this object's dbref, NEXTOWNED
returns the next object owned by the same player. When there are no more objects left owned by that player,
then #-1 is returned. The order of the objects is not guarenteed, but when used correctly, each object owned
by that player will be returned exactly once. The player object itself will not be returned. This is used
similarly to the NEXT primitive. Ex:

 me @ begin dup while dup unparseobj .tell nextowned repeat

(fb6.0+)

NEXTPROP (d s -- s)

This takes a dbref and a string that is the name of a property and returns the next property name on that dbref,
or returns a null string if that was the last. To start the search, give it a propdir, or a blank string. For
example,

 #10 "/" NEXTPROP

or

 #28 "/letters/" NEXTPROP

A blank string is the same as "/". (Requires Mucker Level 3) NEXTPROP will skip properties if they would
not be readable by the program with the given permissions and effective user id.

NOT (x -- i)

Performs the boolean 'not' operation on x, returning i as 1 if x is FALSE, and returning i as 0 otherwise.

NOTIFY (d s --)

d must be a player object. s must be a string. Tells player d message s. If s is null it will print nothing. This
primitive will trigger the _listen'er property on the object the message is sent to, unless the program that
would be run is the same as one one currently running.

NOTIFY_EXCEPT (d1 d2 s --)

d1 must be a room object, s must be a string. Tells everyone at location d1 except object d2 message s. If
object d2 is not a player or NOTHING (#-1) all players are notified. If s is null it prints nothing. Note:
notify_except is now only an inserver $define. It is translated to 1 swap notify_exclude.
See also NOTIFY_EXCLUDE

NOTIFY_EXCLUDE (d dn ... d1 n s --)

Displays the message s to all the players (or _listening objects), excluding the n given players, in the
given room. For example:

 #0 #1 #23 #7 3 "Hi!" notify_exclude

would send "Hi!" to everyone in room #0 except for players (or objects) #1, #7, and #23.
_listener's will not be triggered by a notify_exclude if the program they would run is the same as
the current program running.

NUMBER? (s -- i)

Returns 1 if string on top of the stack contains a number. Otherwise returns 0.

ODROP (d -- s)

Takes object d and returns its odrop (@odrop) string field.

OFAIL (d -- s)

Takes object d and returns its ofail (@ofail) string field.

OK? (x -- i)

Takes x and returns 1 if x is a type dbref, as well as 0 or above, below the top of the database, and is not an
object of type garbage. See also EXIT?, PLAYER?, PROGRAM?, and THING?.

ONLINE (-- d ... i)

Returns a dbref for every connection to the game, and lastly the number of connections.

OR (x y -- i)

Performs the boolean 'or' operation on x and y. Returns i as 1 if either x or y is TRUE, returns i as 0
otherwise.

OSUCC (d -- s)

Takes object d and returns its osuccess (@osucc) string field.

OVER (x y -- x y x)

Duplicates the second-to-top thing on the stack. This is the same as 2 pick.

OWNER (d -- d')

d is any database object. Returns d', the player object that owns d. If d is a player, d' will be the same as
d.

PARSELOCK (s -- l)

Parses a lock string into a lock. If the parsing failed, then the lock returned will be a true_boolexp, Which is
logically false to an 'if' test. See also UNPARSELOCK, LOCK?, PRETTYLOCK, TESTLOCK,
GETLOCKSTR, SETLOCKSTR, and LOCKED?.

PARSEPROP (d s s i -- s)

Returns the string output of the MPI parser, given an object, a property name to parse, an input string for the
{&cmd} variable, and an integer that should either be 1, for when you want {delay} messages to be sent

to the player only, and 0, when you want the rest of the players in the room to get the omessages. Note: for
security reasons, you cannot use parseprop on an object you don't control, if the property is not a _prop or a
~prop. The exception to this is if the MUF program is at least Mucker Level 3. Then parsing of normal
props is allowed. If the MUF program is wizbit, it can also parse @props and .props.

PART_PMATCH (s -- d)

Takes a player name, or the first part of the name, and matches it against the names of the players who are
currently online. If the given string is a prefix of the name of a player who is online, then their dbref is
returned. If two players could be matched by the given string, it returns a #-2. If none of the players online
match, then it returns a #-1.

PENNIES (d -- i)

Gets the amount of pennies player object d has, or the penny value of thing d.

pi (-- f)

Returns pi.

PICK (ni ... n1 i -- ni ... n1 ni)

Takes the i'th thing from the top of the stack and pushes it on the top. 1 pick is equivalent to dup, and 2
pick is equivalent to over.

PLAYER? (d -- i)

Returns 1 if object d is a player object, otherwise returns 0. If the dbref is that of an invalid object, it will
return 0. see also PROGRAM?, ROOM?, THING?, EXIT?, OK?.

POLAR_TO_XYZ (fr ft fp -- fx fy fz)

This converts the spherical polar coordinate (fr, ft, fp) to the XYZ coord (fx, fy, fz). (fb6.0+)

PMATCH (s -- d)

Returns the dbref of the player with name s. (fb6.0+)

POP (x --)

Pops the top of the stack into oblivion.

POPN (?n...?1 i --)

Pops the top n stack items.

POW (f f' - f'')

Returns f raised to the f'th power. If f is zero, f' must be greater than zero. If f is less than zero, f' must
be an integer value.

PR_MODE (-- i)
fg_mode
bg_mode

These are all standard built in defines. They are used with mode and setmode to show what mode the
program is running in, or to set what mode it will run in. For example, mode returns an integer on the stack,

that you can compare against PR_MODE, FG_MODE, or BG_MODE, to determine what mode the program is
in. PR_MODE is defined as 0, FG_MODE is defined as 1, and BG_MODE is defined as 2.

PREEMPT (--)

Prevents a program from being swapped out to do multitasking. Needed in some cases to protect crutial data
from being changed while it is being worked on. A program will remain in preempt mode until its execution
is completed. Basically what this command does is to turn off multitasking, but then you have a limit on how
many instructions you can run without needing either to pause with a sleep, or have a wizbit on the program.

PRETTYLOCK (l -- s)

Unparses a lock into a string fit for players to see. Also see LOCK?, PARSELOCK, UNPARSELOCK,
TESTLOCK, GETLOCKSTR, SETLOCKSTR, and LOCKED?.

PROG (-- d)

Returns the dbref of the currently running program.

PROGRAM? (d -- i)

Returns 1 if object d is a program, otherwise returns 0. If the dbref is that of an invalid object, it will return
0. See also PLAYER?, ROOM?, THING?, EXIT?, OK?.

PRONOUN_SUB (d s -- s')

Takes database object d and substitutes string s according to o-message rules. For example:

 me @ "%n has lost %p marbles." pronoun_sub

would return:

 "igor has lost his marbles."

If the player's name was Igor and his sex were male. d does not have to be a player for the substitutions to
work. The substitutions are:

 %a/%a for absolute possessive (his/hers/its, his/hers/its)
 %s/%s for subjective pronouns (he/she/it, he/she/it)
 %o/%o for objective pronouns (him/her/it, him/her/it)
 %p/%p for possessive pronouns (his/her/its, his/her/its)
 %r/%r for reflexive pronouns (himself/herself/itself,
 %n/%n for the player's name. (himself/herself/itself)

PROPDIR? (d s -- i)

Takes a dbref and a property name, and returns whether that property is a propdir that contains other props.
(Requires mucker level 3)

PUBLIC <functionname>

Declares a previously defined function to be public for execution by other programs. This is a compile-time
directive, not a run-time primitive. To call a public function, put the dbref of the program on the stack, then
put a string, containing the function name, on the stack, then use CALL.

For example:

 #888 "functionname" call

PUT (nx...n1 ni i -- nx...ni...n1)

Replaces the i'th thing from the top of the stack with the value of ni. 1 put is equivalent to swap pop

Example:

 "a" "b" "c" "d" "e" 3 put

would return on the stack:

 "a", "e", "c", "d"

QUEUE (i d s -- i)

Takes a time in seconds, a program's dbref, and a parameter string. It will execute the given program with the
given string as the only string on the stack, after a delay of the given number of second. Returns the pid of
the queued process, or 0 if the timequeue was full. (Requires Mucker Level 3)

RANDOM (-- i)

Returns a random integer from 0 to the MAXINT of the system running the MUCK. In general this number is
(2^31)-1 or 2,147,483,647 (2.1 billion).

READ (-- s)

Reads a string s from the user. This command should not be used in a program that is locked (as opposed to
linked) to an object, as the lock will always fail and print the fail messages at read time. It cannot be used in a
program associated with a room object.

RECYCLE (d --)

Recycles the given object d. Will not recycle players, the global environment, the player starting room, or
any currently running program. (Can recycle objets owned by uid if running with Mucker Level 3
permissions. Can recycle other people's items with wizbit)

REMOVE_PROP (d s --)

Removes property s from object d. If the property begins with an underscore, '_' or a dot '.', and the
effective user does not have permission on that object, the call fails.

(Note: There is a slight bug with REMOVE_PROP in versions fb5.46 and earlier. If you use the primitive to
remove a prop, and then later in the same process try to remove a prop whose name contains that of the
earlier prop, the second property will not be removed. For example:

 loc @ "banned_lock" remove_prop
 loc @ "banned_lock/program" remove_prop

If these two lines were executed in this order, no error would be issued, but property
banned_lock/program would not be removed. If the order of the two lines is reversed, both properties
will be removed.)

REPEAT (--)

Jumps execution to the instruction after the BEGIN in a BEGIN-REPEAT loop. Marks the end of the current
loop.

REVERSE (?n...?1 i -- ?1...?n i)

Reverses the order of the top i items on the stack, returning the number of items reversed. See also
LREVERSE.

RINSTR (s s1 -- i)

Returns the last occurrence of string s1 in string s, or 0 if s1 is not found. "abcbcba" "bc" rinstr
returns 4. See also INSTR.

RINSTRING (s s1 -- i)

Returns the last occurrence of string s1 in string s, or -1 if s1 is not found. Non-case sensitive. See also
INSTRING, INSTR, and RINSTR. This is an inserver define to tolower swap tolower swap
rinstr.

RMATCH (d s -- d')

Takes string s, checks all objects and actions associated with object d, and returns object d' which
matches that string. For example, matches actions and inventory objects for a player object, actions on a
thing object, etc. If nothing is found, d'= #-1. If ambiguous, d' = #-2. If HOME, d' = #-3.

ROOM? (d -- i)

Returns 1 if object d is a room, otherwise returns 0. If the dbref is that of an invalid object, it will return 0.

ROT (x y z -- y z x)

Rotates the top three things on the stack. This is equivalent to 3 rotate.

ROTATE (ni ... n1 i -- n(i-1) ... n1 ni)

Rotates the top i things on the stack.

ROUND (f -- f')

Returns f, rounded to the nearest whole number, as a floating point.

SET (d s --)

Sets flag s to object d. Currently settable things are: Abode, Chown, Dark, Haven, Jump, Link,
and Sticky. Boolean operations (e.g. '!abode') work as expected. See also SETNAME, SETDESC, and
FLAG?.

SET_ERROR (i --)

Sets a specific error flag to ON. (fb6.0+)

SETDESC SETSUCC SETFAIL SETDROP SETOSUCC SETOFAIL SETODROP (d s --)

Takes object d, and sets the string field specified to s. A program may only set string fields of objects that
are owned by the effective user of the program, or any object if the program is Wizard. These are all
actually $defines to addprop with the apprpriate property name. They are effectively defined as:

$define setdesc "_/de" swap 0 addprop $enddef
$define setsucc "_/sc" swap 0 addprop $enddef
$define setfail "_/fl" swap 0 addprop $enddef
$define setdrop "_/dr" swap 0 addprop $enddef
$define setosucc "_/osc" swap 0 addprop $enddef
$define setofail "_/ofl" swap 0 addprop $enddef
$define setodrop "_/odr" swap 0 addprop $enddef

See also SET, SETNAME, ADDPROP, GETPROPSTR, REMOVE_PROP, DESC, SUCC, FAIL, DROP,
OSUCC, OFAIL, and ODROP.

SETLINK (d1 d2 --)

Takes an exit dbref d1, and sets its destination to d2. You must have control of the exit, and if the exit is
already linked, it must be unlinked first by doing setlink with #-1 as the destination. Wizbitted programs can
SETLINK regardless of whether the exit is already linked or who controls it.

SETLOCKSTR (d s -- i)

Tries to set the lock on the given object to the lock expression given in the string. If it was a success, then it
will return a 1, otherwise, if the lock expression was bad, it returns a 0. To unlock an object, set its lock to
a null string.

SETMODE (i --)

Sets the current multitasking mode to the given mode. The integer this uses will be the same as one of those
defined by the standard $defines bg_mode, fg_mode, and pr_mode, being background,
foreground, and preempt mode, respectively. Programs set BLOCK will run PREEMPT, ignoring this
mode.

SETNAME (d s --)

Takes object d, and sets the name to s. A program may only set the names of objects that are owned by the
effective user of the program, or any object if the program is Wizard. The name of a player can never be
set, since that would normally require a password. See also SET, NAME, and SETDESC.

SETOWN (d d --)

Sets the ownership of the first object to the player given in the second dbref. (wizbit only)

SETSEED (s --)

Sets the seed for SRAND. Only the first thirty-two characters are significant. If SRAND is called before
SETSEED is called, then SRAND is seeded with a semi-random value. See also GETSEED and SRAND.
(fb6.0+)

SINE (f -- f')

Returns the sine of f. Operates in the range of -pi/4 and pi/4.

SLEEP (i --)

Makes the program pause here for i seconds. The value of i cannot be negative. If the sleep is for more than
0 seconds, then the program may not thereafter use the READ primitive.

file:///home/riddochc/src/muckman/muf_#name

SMATCH (s s -- i)

Takes a string s, and a string pattern, s2, to check against. Returns TRUE if the string fits the pattern. This
is case insensitive. In the pattern string, the following special characters will do as follows:

• A ? matches any single character.
• A * matches any number of any characters.
• {word1|word2|etc} will match a single word, if it is one of those given, separated by |

characters, between the {}'s. A word ends with a space or at the end of the string. The given example
would match either the words "word1", "word2", or "etc". {} word patterns will only match
complete words: "{foo}*" and "{foo}p" do not match "foop" and "*{foo}" and
"p{foo}" do not match "pfoo". {} word patterns can be easily meaningless; they will match
nothing if they:

 (a) contain spaces,
 (b) do not follow a wildcard, space or beginning of string,
 (c) are not followed by a wildcard, space or end of string.

• If the first char of a {} word set is a '^', then it will match a single word if it is NOT one of those
contained within the {}s. Example: '{^Foxen|Fiera}' will match any single word except for
Foxen or Fiera.

• '[aeiou]' will match a single character as long as it is one of those contained between the []s. In
this case, it matches any vowel.

• If the first char of a [] char set is a '^', then it will match a single character if it is not one of those
contained within the []s. Example: '[^aeiou]' will match any single character except for a
vowel.

• If a [] char set contains two characters separated by a '-', then it will match any single character
that is between those two given characters. Example: '[a-z0-9_]' would match any single
character between 'a' and 'z', inclusive, any character between '0' and '9', inclusive, or a
'_'.

• The '\' character will disable the special meaning of the character that follows it, matching it
literally.

Example patterns:

• "d*g" matches "dg", "dog", "doog", "dorfg", etc.
• "d?g" matches "dog", "dig" and "dug" but not "dg" or "drug".
• "M[rs]." matches "Mr." and "Ms."
• "M[a-z]" matches "Ma", "Mb", etc.
• "[^a-z]" matches anything but an alphabetical character.
• "{Moira|Chupchup}*" matches "Moira snores" and "Chupchup arghs."
• "{Moira|Chupchup}*" does NOT match "Moira' snores".
• "{Foxen|Lynx|Fier[ao]} *t[iy]ckle*\?" Will match any string starting
with 'Foxen', 'Lynx', 'Fiera', or 'Fiero', that contains either
'tickle' or 'tyckle' and ends with a '?'.

SRAND (-- i)

Generates a seeded random number. See also GETSEED and SETSEED (fb6.0+).

SQRT (f -- f')

Returns the square root of f. f must be greater than or equal to zero.

STATS (d -- total rooms exits things programs players garbage)

Returns the number of objects owned by d, or the total objects in the system if d == #-1. This is broken
up into a total, rooms, exits, things, programs, players, and garbage. This functions much as the @STAT
command. (Requires Mucker Level 3)

STOD (s -- d)

Takes a string and attempts to extract a dbref number from it. Recognizes both plain numbers as well as
numbers prepended with the # sign.

STRCAT (s1 s2 -- s)

Concatenates two strings s1 and s2 and pushes the result s = s1s2 onto the stack.

STRCMP (s1 s2 -- i)

Compares strings s1 and s2, and returns i as 0 if they are equal. Otherwise, STRCMP returns i as the
difference between the first non-matching character in the strings. For example, "a" "z" strcmp returns
25. While returning 0 (false) for a match may seem counter-intuitive, this arrangement allows the
primitive to be used for things such as string sorting functions. Unlike STRINGCMP, STRCMP is case
sensitive. See also STRNCMP.

STRCUT (s i -- s1 s2)

Cuts string s after its i'th character. For example,

 "Foobar" 3 strcut

returns

 "Foo" "bar"

If i is zero or greater than the length of s, returns a null string in the first or second position, respectively.

STRING? (x -- i)

Returns true if x is a string.

STRINGCMP (s1 s2 -- i)

Compares strings s1 and s2. Returns i as 0 if they are equal, otherwise returns i as the difference between
the first non-matching character in the strings. For example, "a" "z" stringcmp returns 25. This function
is not case sensitive, unlike STRCMP. See also STRNCMP.

STRINGPFX (s s2 -- i)

Returns 1 if s2 is a prefix of s. Case insensitive. Returns 0 if s2 is not a prefix of s.

STRIP (s -- s)

This is a built in $define. It is interpreted as striplead striptail It strips the spaces from both

ends of a string.

STRIPLEAD (s -- s)

Strips leading spaces from the given string.

STRIPTAIL (s -- s)

Strips trailing spaces from the given string.

STRLEN (s -- i)

Returns the length of string s.

STRNCMP (s1 s2 i -- i')

Compares the first i characters in strings s1 and s2. Return value is like STRCMP. See also
STRINGCMP.

STRTOF (s -- f)

Converts string s to a floating point number. s may be in the format xxx.yyy or xxx.yyyEzz. See also
FTOSTR.

SUBST (s1 s2 s3 -- s)

s1 is the string to operate on, s2 is the string to change all occurences of s3 into, and s is resultant string.
For example:

 "HEY_YOU_THIS_IS" " " "_" subst

results in

 "HEY YOU THIS IS"

s2 and s3 may be of any length.

SUCC (d -- s)

Takes object d and returns its success (@succ) string field s.

SWAP (x y -- y x)

Takes objects x and y on the stack and reverses their order.

SYSPARM (s -- s)

Takes a tuneable system parameter and returns its value as a string. For an integer it returns it as a string, a
time is returned as a string containing the number of seconds, a dbref is returned in standard dbref format,
and boolean is returned as 'yes' or 'no' Checking an invalid parameter or a parameter with higher
permissions then the program has will return an empty string.

Parameters available:

(str) dumpwarn_mesg - Message to warn of a coming DB dump
(str) deltawarn_mesg - Message to warn of a coming delta dump
(str) dumpdeltas_mesg - Message telling of a delta dump
(str) dumping_mesg - Message telling of a DB dump
(str) dumpdone_mesg - Message notifying a dump is done

(str) penny - A single currency
(str) pennies - Plural currency
(str) cpenny - Capitolized currency
(str) cpennies - Capitolized plural currency
(str) muckname - The name of the MUCK
(str) rwho_passwd - Password for RWHO servers (Wizbit only)
(str) rwho_server - RWHO server to connect to (Wizbit only)
(str) huh_mesg - Message for invalid commands
(str) leave_mesg - Message given when QUIT is used
(str) register_mesg - Message for a failed 'create' at login
(time) rwho_interval - Interval between RWHO updates
(time) dump_interval - Interval between dumps
(time) dump_warntime - Warning prior to a dump
(time) monolithic_interval - Max time between full DB dumps
(time) clean_interval - Interval between unused object purges

(time) aging_time - When an object is considered old and
unused

(int) max_object_endowment - Max value of an object
(int) object_cost - Cost to create an object
(int) exit_cost - Cost to create an exit
(int) link_cost - Cost to link an exit
(int) room_cost - Cost to dig a room
(int) lookup_cost - Cost to lookup a player name
(int) max_pennies - Max number of pennies a player can own
(int) penny_rate - Rate for finding pennies
(int) start_pennies - Starting wealth for new players

(int) kill_base_cost - Number of pennies for a 100 percent
chance

(int) kill_min_cost - Minimum cost for doing a kill
(int) kill_bonus - Bonus for a successful kill
(int) command_burst_size - Maximum number of commands per burst
(int) commands_per_time - Commands per time slice after burst
(int) command_time_msec - Time slice length in milliseconds

(int) max_delta_objs - Max percent of changed objects for a
delta

(int) max_loaded_objs - Max percent of the DB in memory at once
(int) max_process_limit - Total processes allowed
(int) max_plyr_processes - Processes allowed for each player
(int) max_instr_count - Max preempt mode instructions

(int) instr_slice - Max uninterrupted instructions per time
slice

(int) mpi_max_commands - Max number of uninterruptable MPI
commands

(int) pause_min - Pause between input and output servicing
(int) free_frames_pool - Number of program frames pre-allocated

(int) listen_mlev - Minimum Mucker level for _listen programs
(ref) player_start - The home for players without a home
(bool) use_hostnames - Do reverse domain name lookup
(bool) log_commands - The server logs commands (Wizbit only)

(bool) log_failed_commands - The server logs failed commands (Wizbit
only)

(bool) log_programs - The server logs programs (Wizbit only)
(bool) dbdump_warning - Warn about coming DB dumps
(bool) deltadump_warning - Warn about coming delta dumps
(bool)
periodic_program_purge - Purge unused programs from memory

(bool) support_rwho - Use RWHO server
(bool) secure_who - WHO works only in command mode
(bool) who_doing - Server support for @doing
(bool) realms_control - Support for realm wizzes
(bool) allow_listeners - Allow listeners
(bool) allow_listeners_obj - Objects can be listeners
(bool) allow_listeners_env - Listeners can be up the environment
(bool) allow_zombies - Zombie objects allowed
(bool) wiz_vehicles - Only wizzes can make vehicles
(bool)
force_mlev1_name_notify - M1 programs forced to show name on notify

(bool) restrict_kill - Can only kill KILL_OK players
(bool) registration - Only wizzes can create players
(bool) teleport_to_player - Allow use of exits linked to players

(bool) secure_teleport - Check teleport permissions for personal
exits

(bool) exit_darking - Players can set exits dark
(bool) thing_darking - Players can set objects dark
(bool) dark_sleepers - Sleepers are effectively dark
(bool) who_hides_dark - Dark players are hidden (Wizbit only)

(bool) compatible_priorities - Backwards compatibility for exit
priorities

(bool) do_mpi_parsing - Parse MPI strings in messages
(bool) look_propqueues - Look triggers _lookq propqueue
(bool) lock_envcheck - Locks will check the environment
(bool) diskbase_propvals - Allow diskbasing of property values
SYSTIME (-- i)

Returns the number of second from Jan 1, 1970. This is compatible with the system timestamps and may be
broken down into useful values through 'timesplit'.

TAN (f -- f')

Returns the tangent of f. Operates in the range of -pi/4 and pi/4. (fb6.0+)

TESTLOCK (d l -- i)

Tests the player dbref against the given lock. If the test was successful, then this returns a 1. If the test
failed, then this returns a 0. See also LOCK?, PARSELOCK, UNPARSELOCK, PRETTYLOCK,
GETLOCKSTR, SETLOCKSTR, and LOCKED?

TEXTATTR (s1 s2 -- s3)

Takes plain text string s1 and adds color and formmatting codes specified in string s2, returning the
enhanced string as s3. The attributes specified in s2 should be a comma-separated list of attribute names.
For example:

 "WARNING!" "bold,red" textattr me @ swap notify

(fb6.0+)

THEN See IF

THING? (d -- i)

Returns i as 1 if object d is a thing, otherwise returns i as 0. See also PLAYER?, PROGRAM?, ROOM?,
EXIT?, OK?.

TIME (-- s m h)

Returns the time of day as integers on the stack, seconds, then minutes, then hours.

TIMEFMT (s i -- s)

Takes a format string and a SYSTIME integer and returns a string formatted with the time. The format string
is ASCII text with formatting commands:

 %% -- "%"
 %a -- abbreviated weekday name.
 %A -- full weekday name.
 %b -- abbreviated month name.
 %B -- full month name.
 %C -- "%A %B %e, %Y"
 %c -- "%x %X"
 %D -- "%m/%d/%y"
 %d -- month day, "01" - "31"
 %e -- month day, " 1" - "31"
 %h -- "%b"
 %H -- hour, "00" - "23"
 %I -- hour, "01" - "12"
 %j -- year day, "001" - "366"
 %k -- hour, " 0" - "23"
 %l -- hour, " 1" - "12"
 %M -- minute, "00" - "59"
 %m -- month, "01" - "12"
 %p -- "AM" or "PM"
 %R -- "%H:%M"
 %r -- "%I:%M:%S %p"
 %S -- seconds, "00" - "59"

 %T -- "%H:%M:%S"
 %U -- week number of the year. "00" - "52"
 %w -- week day number, "0" - "6"
 %W -- week# of year, starting on a monday, "00" - "52"
 %X -- "%H:%M:%S"
 %x -- "%m/%d/%y"
 %y -- year, "00" - "99"
 %Y -- year, "1900" - "2155"
 %Z -- Time zone. "GMT", "EDT", "PST", etc.

TIMESPLIT (i -- is im ih id im iy iw iyd)

Splits a systime value into 8 values in the following order: seconds, minutes, hours, monthday, month, year,
weekday, yearday. Weekday starts with sunday as 1, and yearday is the day of the year (1-366).

TIMESTAMPS (d -- i i2 i3 i4)

Returns the following for a program, the time created (i), the time last modified (i2), the time last used
(i3), and the number of uses(i4) for any object.

TOLOWER (s -- s)

Takes a string and returns it with all the letters in lowercase.

TOUPPER (s -- s)

Takes a string and returns it with all the letters in uppercase.

TREAD (i -- i | s i)

Acts like a timed READ call. If the user does not provide input within the given number of seconds, the READ
call will time-out and return a failure to the program, otherwise it returns a success and the string value
entered.

TRIG (-- d)

Returns the dbref of the original trigger.

UNPARSELOCK (l -- s)

Unparses a lock into a string fit for program editing. Also see LOCK?, PARSELOCK, PRETTYLOCK,
TESTLOCK, GETLOCKSTR, SETLOCKSTR, and LOCKED?.

UNPARSEOBJ (d -- s)

Returns the name-and-flag string for an object. It always has the dbref and flag string after the name, even if
the player doesn't control the object. For example: "One(#1PW)"

UNTIL (i --)

If the value on top of the stack is false, then it jumps execution back to the instruction afer the matching
BEGIN statement. (BEGIN-UNTIL, BEGIN-REPEAT, and IF-ELSE-THEN's can all be nested as much
as you want.) If the value is true, it exits the loop, and executes the next instruction, following the UNTIL.
Marks the end of the current loop.

VAR <name>

VAR is not a 'true' primitive in that it must always be used outside words and does not alter the stack in any
way. When the compiler sees a VAR statement, it allows the use of <name> as a variable in all words
sequentially defined after the var declaration. See also @, VARIABLE, and LOCALVAR.

VARIABLE (i -- v)

Converts integer i to variable reference v. Of the pre-defined variables, me corresponds to integer 0, loc
to 1, and trigger to 2. Thus:

 me @

and

 0 variable @

will do the same thing (return the user's dbref). User-defined variables are numbered sequentially starting at
3 by the compiler. Note that these variable numbers can be used even if variables have not been formally
declared, making implementation of such things as arrays conveniently easy. See @, !, and VAR

VERSION (-- s)

Returns the version of this code in a string. "Muck2.2fb6.0", currently.

XYZ_TO_POLAR (fx fy fz -- fr ft fp)

This converts the XYZ coordinate (fx, fy, fz) to the spherical polar coord (fr, ft, fp). (fb6.0+)

WHILE (i --)

If the value on top of the stack is false, then this causes execution to jump to the instruction after the UNTIL
or REPEAT for the current loop. If the value is true, however, execution falls through to the instruction after
the WHILE.

3.2.4 MUF Library Reference
The standard database and package of programs includes the following programming libraries:

• lib-case
• lib-edit
• lib-editor
• lib-index
• lib-lmgr
• lib-look
• lib-match
• lib-mesg
• lib-mesgbox
• lib-props
• lib-reflist
• lib-strings
• lib-stackrng

Note: Since the libararies were written, many of the functions they provide have been defined as MUF

primitives. The libraries are retained in their current form for compatibility with existing programs. If a
primitive providing the functionality you want is available, it will be more efficient than a library call. For
more information on using libraries, see Section 3.2.2.

Functions by Library:

Lib-Case

An ingenious library that uses a few simple $defines to give MUF 'case' or 'switch' handling like you
would find in other programming languages. See the program's header comment for a good, terse
explanation.

• case
• default
• end
• endcase

Lib-Edit

This library includes string-editing routines, with capabilities for handling ranges of strings such as would be
present by reading a list or range from a list onto the stack.

• EDITcenter
• EDITcopy
• EDITdisplay
• EDITformat
• EDITfmt_rng
• EDITjoin
• EDITjoin_rng
• EDITindent
• EDITleft
• EDITlist
• EDITmove
• EDITreplace
• EDITright
• EDITsearch
• EDITshuffle
• EDITsort
• EDITsplit
• instring
• STRasc
• STRchr
• STRright
• rinstring

Lib-Editor

A set of functions providing an interface with the list editor. Note: this library is in the public domain, but its
terms of use state that the author of the library, Foxen, must be credited in the header comment of any
program that makes use of it.

• EDITOR
• EDITORloop
• EDITORparse
• EDITORheader

Lib-Index

This library provides a set of routines for handling 'indexes'. See Indexes. Note: There are two versions of
this library in circulation. Currently, basedb.db and fbmuf provide the older version. The second version
— which may or may not be available on your MUCK — provides the additional public routines index-
setmatchstr,, index-getmatchstr, and index-propname. Use @view $lib/index to
determine which version you have. The standard version is discussed here. Also, the standard version as
implemented by basedb.db and the upload script in fbmuf only set _def/ props in the .period-
prefix form: routine names must be joined with a leading period in your code, unless the wizards on your
MUCK have added the no-period form. Example: to use the routine index-add, put .index-add in your
code. (The newer version may or may not require the .format). There are some problems with the
implementation of several functions in this library, as discussed in individual entries below.

• index-add
• index-add-sort
• index-delete
• index-envmatch
• index-match
• index-matchrange
• index-remove
• index-set
• index-value
• index-write

Lib-Match

A library of matching functions.

• .noisy_match
• .noisy_pmatch
• .controls
• .match_controlled
• .multi_rmatch
• .table_match
• .std_table_match

Lib-LMGR

Lib-Lmgr is one of several libraries holding functions used by lsedit. These functions are also useful for
other programs that need to manipulate lists without going through the list editor, or to create their own list
editors. Note: The documentation provided in the program's header comment, and listed with @view, is
inaccurate. The function LMGR-CopyRange (listed in the header) does not exist, but the following
undocumented public functions do: LMGR-PutBRange, LMGR-GetCount, and LMGR-SetCount.
The public function LMGR-ExtractRange (undocumented, but included as a _def/) does not work.

Despite the inaccuracies of documentation, the functions provided by Lib-Lmgr are useful and efficient,
and provide a number of capabilities not duplicated by primitives.

• LMGR-ClearElem
• LMGR-ClearRange
• LMGR-DeleteList
• LMGR-DeleteRange
• LMGR-FullRange
• LMGR-GetBRange
• LMGR-GetCount
• LMGR-GetElem
• LMGR-Getlist
• LMGR-GetRange
• LMGR-InsertRange
• LMGR-MoveRange
• LMGR-PutBRange
• LMGR-PutElem
• LMGR-PutRange
• LMGR-SetCount

Lib-Look

A set of routines adapted to 'look' functions. Note: the standard version of lib-look as implemented by
basedb.db and the upload script in fbmuf only set _def/ props in the .period-prefix form:
routine names must be joined with a leading period in your code, unless the wizards on your MUCK have
added the no-period form. Example: to use the routine 'safecall', put '.safecall' in your code.

• contents-filter
• cmd-look
• db-desc
• dbstr-desc
• get-contents
• list-contents
• long-display
• safecall
• short-display
• short-list
• str-desc
• unparse

Lib-Mesg

This library provides functions for handling 'messages'. See Messages.

• MSG-append
• MSG-count
• MSG-create
• MSG-destroy
• MSG-info

• MSG-insitem
• MSG-item
• MSG-message
• MSG-setinfo
• MSG-setitem
• MSG-delitem

Lib-Mesgbox

A library of message and message-box handling routines. See Messages.

• MBOX-append
• MBOX-badref?
• MBOX-count
• MBOX-create
• MBOX-delmesg
• MBOX-destroy
• MBOX-insmesg
• MBOX-message
• MBOX-msginfo
• MBOX-num2ref
• MBOX-ref2num
• MBOX-ref2prop
• MBOX-setinfo
• MBOX-setmesg

Lib-Props

This library contains several useful property-handling functions.

• setpropstr
• envprop
• envsearch
• locate-prop

Lib-Reflist

A library of reflist-handling routines. See Reflists.

• REF-add
• REF-delete
• REF-first
• REF-next
• REF-inlist?
• REF-list
• REF-allrefs
• REF-filter
• REF-editlist

Lib-Strings

This library provides a number of routines for formating strings.

• instring
• rinstring
• STRasc
• STRblank?
• STRchar
• STRcenter
• STRfillfield
• STRleft
• STRrsplit
• STRright
• STRsls
• STRsms
• STRsplit
• STRstrip
• STRsts

Lib-Stackrng

This library provides routines for handling items within a specified range of the stack. See Ranges

• sr-catrng
• sr-copyrng
• sr-deleterng
• sr-extractrng
• sr-filterrng
• sr-insertrng
• sr-poprng
• sr-swaprng

case (--)

Begins a case statement. See header for lib-case. (Lib-Case)

cmd-look (s --)

Does a match function on s, then calls db-desc with the results, simulating the server look command.
(Lib-Look)

contents-filter (a d -- d' ... d'' i)

Takes the address of a 'filter' function and a dbref, and returns the objects from d's contents for which the
filter function returns true (1) as a range on the stack. The first item found (the 'top' of a Contents or
Carrying list) will be at the start of the range. Example:

 : PlayerCheck (d -- i)
 player? if 1 else 0 then
 ;
 : GetPlayers (-- d' ... d'' i)
 'PlayerCheck me @ location contents-filter
 ;

This code puts all the players in the room on the stack as a range of dbrefs, filtering out objects of other
types. 'PlayerCheck (a function name joined with an ' apostrophe) puts the address of the the filter
function PlayerCheck function on the stack. (Lib-Look)

.controls (d1 d2 -- i)

Returns true if player d1 controls object d2. The same capability is provided by the CONTROLS primitive.
(Lib-Match)

db-desc (d --)

Prints a description of d, including the name and triggering succ and fail if d is a room. The desc is not
parsed for MPI. Programs run with d stored in the variable trigger. (Lib-Look)

dbstr-desc (d s --)

Prints s as a description, like str-desc, using d as the effective trigger value. The string is not parsed for
MPI. (Lib-Look)

default (x --)

Declares default action to take if no cases in a case statement test true. See header for lib-case. (Lib-Case)

EDITcenter (range ... offset i1 i2 i3 -- range')

Center justifies all strings between position1 and position2 for a screen i1 characters wide. That is,
the strings are padded to a length of i1 characters with leading and trailing spaces. (Lib-Edit)

EDITcopy ({rng} ... offset dest start end -- {rng'} ...)

Copies text within a string range from one line to another, inserting it in the new location. (Lib-Edit)

EDITdisplay (range --)

Displays the range of strings on the stack to the user. See also EDITlist. (Lib-Edit)

EDITformat (range ... c i1 i2 -- range')

Formats the strings in range to strings between right margin i1 and wrap margin i2 in length. Short
strings are joined to fill this field width; long strings are split at the last occurance of split character c found
between i1 and i2. See aslo EDITfmt_rng. (Lib-Edit)

EDITfmt_rng (range ... offset i position1 position2 -- range')

Formats the strings of the range between position1 and position2 to strings i characters wide,
splitting long strings and joining short strings. A string that consists only of spaces is considered a paragraph
delimiter and is not joined. i must be equal to or greater then 20. The string at position1 must 2 or
more characters long. See also EDITformat. (Lib-Edit)

EDITindent (range ... offset i position1 position2 -- range')

Indents all strings between position1 and position2 by i spaces. That is, the strings are padded with
i space characters. If i is a negative number, it reduces indentation by i characters, but will not unindent
past the left margin. (Lib-Edit)

EDITjoin (range -- s)

Joins a range of strings on the stack into one string. (Lib-Edit)

EDITjoin_rng (range ... offset position1 position2 -- range')

Joins the lines of the subrange between position1 and position2 into a single string, returning the
string range that results. Leading and trailing spaces are stripped from the strings to be joined, and a single
space is inserted in the combined string at points where strings were joined. See also EDITjoin. (Lib-
Edit)

EDITleft (range ... offset position1 position2 -- range')

Left justifies all strings between position1 and position2. That is, leading spaces are stripped from
these strings. (Lib-Edit)

EDITlist (range ... offset i1 i2 i3 -- range)

Prints the strings i2 to i3 from range to the user's screen. If i1 is true, the lines will be prepended with line
numbers. See also EDITdisplay. (Lib-Edit)

EDITOR (range -- range' s)

Puts the user in the list editor, using range as the values for the list. The list can be interactively edited as
with command lsedit. Exits with the modified range and the editor's exit string (end or abort) on the stack.
See also EDITORloop. (Lib-Editor)

EDITORheader (--)

Prints the standard header informing the user that he is entering the list editor and giving succinct help.
Called automatically by EDITOR.

< Entering editor. Type '.h' on a line by itself for help. >
< '.end' will exit the editor. '.abort' aborts the edit. >
< Poses and says will pose and say as usual. To start a >
< line with : or " just preceed it with a period ('.') >

(Lib-Editor)

EDITORloop (range s1 i1 -- range' s1 i2 s2 i3 i4 s3)

Puts the user in the list editor, using range as the values for the lines of the list. The list can be interactively
edited as with command lsedit. The EDITOR function provides similar functionality; EDITORloop
gives greater control over data passed to and from the editor.

EDITORloop takes a range, a space-separated string s1 containing any commands that can be used to
return from the editor in addition to end and abort, cursor position i1, and the first editor command to
be executed.

EDITORloop returns the modified range, the string s1, the cursor postion at time-of-exit, exit arguments
s2, i3, and i4, and the command string used to exit the editor on the stack. Exit arguments are
parameters returned to the program when EDITORloop exits. They follow the syntax of other editor
commands:

 command start_line end_line = argument_string

start_line is i3. end_line is i4. argument_string is s2.

Example: Suppose you create a program that allows players included in a list holding their dbrefs to update
documents in a news reader program. The program includes and #admin function that puts the user into the
editor to modify this list. You want to include, in your version of the editor, a command that shows the names
of the players who are currently in the list, optionally followed by information such as the last time they
logged on or their position/title in the MUCK news staff. The user could then display the names (and other
information) for players whose dbrefs are in the list, or a range from the list, by entering .names or
.names <range> or .names [<range>] = <field>. You could do this by reading the list onto
the stack and supplying names as a command string that would cause EDITORloop to return, with code
such as the following:

 "_staff" trig LMGR-Getlist (*read list onto stack as a range*)
 "names" over 1 + ".i" EDITORloop (*put user in editor, ready to insert
 text, at the next free line, with
 'names' defined as a .command that
 will cause EDITORloop to return*)

If the user typed .names while at line 6 of a 12-line list of dbrefs, the following would be put on the stack:

 ... #123, 12, "names", 6, "", 0, 0, "names"

Using comparison primitives such as SMATCH or STRINGCMP, you could check the top value on the stack
and, if it is the string "names" (as it is here), execute a ShowNames function in your program, then return
to the editor with another instance of EDITORloop.

If the user had typed .names 1 8, the following would be put on the stack:

 ... #123, 12, "names", 6, "", 1, 8, "names"

Your ShowNames function would need to use the values 1 and 8 to show only names for the dbrefs in lines
1 - 8.

If the user had typed .names 1 - 8 = title, the following would be put on the stack:

 ... #123, 12, "names", 6, "title", 1, 8, "names"

ShowNames would use this information to show the names of players listed in lines 1 - 8 of the list,
concattenated with their title... perhaps a value stored in their _news/title property. See also EDITOR.
(Lib-Editor)

EDITORparse (range s1 i1 s2 -- range' s1 i1 i2)

Parses range with the editor command s2, returning the modified range, the original paramaters s1 and
i1, and the last line handled as i2.

Example:

 "mink" "otter" "linsang" 3 "quit" 1 ".indent 1 3 = 5" EDITORparse

This would enter and exit the editor, indenting each string in the range by 5 spaces, with the last line handled
on top of the stack as i2. The standard editor output would be shown to the user:

 < Indented 3 lines starting at line 1, 5 columns. >

(Lib-Editor)

EDITmove ({rng} ... offset dest start end -- {rng'} ...)

Moves text within a string range from one line to another location, deleting the original. (Lib-Edit)

EDITreplace (range ... offset s1 s2 position1 position2 -- range')

Performs a case-sensitive seach of the range items from position1 to position1, inclusive, for all
occurances of string s1, replacing each with string s2. (Lib-Edit)

EDITright (range ... offset i position1 position2 -- range')

Right justifies all strings between position1 and position2 for a screen width of i characters. That is,
these strings are padded with trailing spaces to a string length of i characters. (Lib-Edit)

EDITsearch (range ... offset s position -- range ... i2)

Perfroms a case-sensitive search of the strings in range for an occurance of string s. The search begins
with the item at position. i2 is the position of the first item that includes an occurance of string s. (Lib-
Edit)

EDITshuffle (range -- range')

Randomizes the order items in a range. (Lib-Edit)

EDITsort (range i1 i2 -- range')

Alphabetically sorts range. If i1 is true, the sort will be in descending order: "aardvark" would be
near the top of the stack and "zebra" would be near the bottom. If i2 is true, the sort will be case-
sensitive: "Leviathon" would be come before "lapidary", since "L" and "l" are two different
characters in a case-sensitive comparison, with "L" preceding "l". (Lib-Edit)

EDITsplit (s c i1 i2 -- range)

Splits string s on the last split character c found between right margin i1 and wrap margin i2. If no split
character is found in this range, the string is split at right margin i1. (Lib-Edit)

end (--)

Declares the end of an action block in a case statement. See header for lib-case. (Lib-Case)

endcase (--)

Ends a case statement. See header for lib-case. (Lib-Case)

envprop (d s -- s')

Searches up the environment tree from object d, looking for a property with the name s. Envprop returns
the value stored in the first occurance of prop s found, or a null string if it wasn't found. (Lib-Props)

envsearch (d s -- d')

Searches up the environment tree from object d for an occurance of property s. Envsearch returns the
dbref of the first object the property is found on, or #-1 if the propety is not found. (Lib-Props)

get-contents (d -- d' ... d'' i)

Passes the contents of object d through a standard filter that emulates a server contents list: dark rooms do
not have contents lists, unless you control the objects or the room; dark objects you don't control do not
show; you do not show. Those objects which would show in a Contents/Carrying list by these criteria

are returned as a range of dbrefs. The first contained object (the 'top' of a Contents or Carrying list) is
at the start of the range. (Lib-Look)

index-add (d s1 s2 s3 -- i)

Adds name s2, associated with value s3, to index s1 on object d. Returns error code i. If s2 is already
a member of the index (matching exactly), index-add returns error code 0, and no changes are made to the
index. Otherwise, the name and value are added to the index and error code 1 is returned (operation
successful). See also Indexes and std-index-add. (Lib-Index)

index-add-sort (d s1 s2 s3 -- i)

Like index-add, index-add-sort adds name s2 and value s3 to index s1, stored on object d.
index-add always adds a name to the end of the index; Index-add-sort, in theory, inserts the new name
in alphabetical order, immediately before the element it would precede alphabetically. In theory, if names are
always added to the index with this routine, the index will remain in alphabetical order. However, this
function does not behave as advertised: like index-add, it always puts new names at the end of the index.
Returns error code i: 1 is 'no error: item added', 0 is 'error: name already a
member of index; index unchanged'. See also Indexes and std-index-add. (Lib-Index)

index-delete (d s1 s2 --)

Removes name s2, and its associated value, from index s1 on object d, with no error checking. See also
Indexes and std-index-delete. (Lib-Index)

index-first (d s1 -- s2)

Returns the first name in index s1 on object d as s2. See also Indexes and std-index-first. (Lib-
Index)

index-envmatch (d s1 s2 -- d2 s3 i)

Returns name s2 from index s1 on object d as s3, the object on which the name was found as d2, and
error code i (1 if no error; 0 if no match). If no match is found on d, continues searching up the
environment tree, checking indexes called s2 on these objects as well. If index s1 is was created with
index-add, or with index-setmatchstr with the 'w' name parameter, index-envmatch will
return the first match found. That is, there is no check for ambiguity. See also Indexes and std-index-
envmatch. (Lib-Index)

index-last (d s1 -- s2)

In theory, returns the last name in index s1 on object d as s2. In practice, returns a null string. See also
Indexes and std-index-last. (Lib-Index)

index-match (d s1 s2 -- s2' i)

Returns name s2 from index s1 on object d and error code 1 (no error) if s2 is a member of index s1. If
s2 is not a member of s1, index-match returns a null string and error code 0 (error: no match). If
index s1 was created with index-add, or with index-setmatchstr with the 'w' name parameter,
index-match will return the first match found. That is, there is no check for ambiguity. If the index was
created with index-setmatchstr without the 'w' parameter, only complete, explicit matches will be
returned, in which case ambiguity is impossible. See also Indexes and std-index-match. (Lib-Index)

index-matchrange (d s1 s2 -- string_range)

Performs a partial-word match search on all members of index s1 on object d, returning those which match
true as a string range (see Ranges). Ignores match-type parameters: any full or partial matches will be
returned. Not available in 'std-' form. See also Indexes. (Lib-Index)

index-next (d s1 s2 -- s3)

Returns the name immediately following name s2 from index s1 on object d. See also Indexes and std-
index-next.(Lib-Index)

index-prev (d s1 s2 -- s3)

Returns the name immediately preceding name s2 from index s1 on object d. See also Indexes and std-
index-prev.(Lib-Index)

index-remove (dbref index name -- error)

Removes name s2 and its associated value from index s1 on object d, and returns an error code: 1 if the name
existed in the index and was successfully removed, and 0 otherwise. See also Indexes and std-index-
remove. (Lib-Index)

index-set (d s1 s2 s3 -- i)

Adds name s2, associated with value s3, to index s1 on object d, and returns error code i. Unlike
index-add and index-write, this routine does not check for and return errors: if the name is not
presently a member of the index, it will be added; if the name is already a member, its value will be edited.
See also Indexes and std-index-set. (Lib-Index)

index-value (d s1 s2 -- s3)

Returns the value associated with name s2 in index s1 on object d. If the index does not include name s1,
s3 will be a null string.See also Indexes and std-index-value. (Lib-Index)

index-write (d s1 s2 s3 -- i)

In index s1 on object d, sets the value of existing index member with name s2 to value s3. Returns error
code i: 1 is 'no error: value changed', 0 is 'error: name not a member of this
index; index unchanged'. See also Indexes and std-index-write. (Lib-Index)

Indexes

"In theory, there's no difference between theory and practice. But in practice, there is." Keep this firmly in
mind when working with Lib-Index functions. The following is a brief discussion of how Lib-Index
functions are supposed to work. However, several do not behave as advertised. Such cases are noted in the
entries for specific Lib-Index functions.

An index is a set of name/value pairs. The index as a whole is stored as a set of associated properties, in a
single propdir, consisting of a list of all elements (stored as a single string) and a property for each 'name',
which holds a 'value' associated with the name.

Most routines are also available in 'std-' form (the routine name is prefaced with std-, such as
.index-add to .std-index-add). Routines which store information (add members to the index) have
the following stack effect:

 (d s1 s2 s3 -- d s1 s2 s3 i)

where d is the object the index is stored on, s1 is the name of the index, s2 is the 'name' value, and s3 is the
'value' value. All four items are left on the stack unchanged, and an integer error code is returned: 1 for 'no
error: item successfully added', and 0 for 'error: s2 is already a member of
the index; index unchanged'.

Routines that retrieve information (perform matches) have the following stack effect:

 (d s1 s2 s3 -- d s1 s2' s4 i)

where d is the object the index is stored on, s1 is the name of the index, s2 is the name to be matched, and
s3 is a string holding 1 - 3 characters specifying matching criteria:

 x: exact match only, ignores the index itself
 e: exit-style match: exact match of ;-separated value, and select the
 first match found if there are more than one
 w: normal operation: match the beginning of a space separated word,
 and fail if more than one matched. So, 'mat' matches 'mattress'
 and 'lit match', but not 'rematch'.

Arguments d and s1 are left on the stack unchanged. The name to be matched is, if found, returned as s2'.
If the match was unsuccessful, s2' will be a null string. If s2 were a partial match, s2' would be returned
as the full name. The match criteria paramters, s3, are returned as null string s4. Finally, an error code is
returned (1 is no error, match successful; 0 is error, match unsuccessful).

The default matching criteria (employed with routines called without the std- prefix) is xew: all three
criteria are used, and the first match made by any of the criteria will be returned.

instring (s1 s2 -- i)

Returns the position of the first occurance of s2 in s1, case-insensitive. The same capability is provided by
the INSTRING primitive. (Lib-Strings)

list-contents (s d --)

Calls get-contents followed by long-display to print out all of the contents of the given dbref. If
there are any contents listed, then the string on the stack is printed out, for "Contents:" or the like. If the
contents list is empty, the string is ignored. The triggering player's name is omitted from the contents list of a
room (that is, you don't see yourself listed). (Lib-Look)

LMGR-ClearElem (i s d --)

Clears the content of line i from list s on object d. The size of the list (number of lines) remains
unchanged.

LMGR-ClearRange (i1 i2 s d --)

Clears i1 lines from list s on object d, beginning with line i2. The number of lines in the list does not
change. See also LMGR-DeleteRange

LMGR-DeleteList (s d --)

Deletes list s from object d.

LMGR-DeleteRange (i1 i2 s d --)

Deletes i1 lines from list s on object d, beginning with line i2. Lines in the orginal list positioned after
line i2 are shifted to earlier positions. See also LMGR-ClearRange.

LMGR-FullRange (s d -- i 1 s d)

Returns the count of lines in list s, an index value of 1, and string s and dbref d unchanged. These are the
parameters that would be needed to put a complete list on the stack using LMGR-GetRange.

LMGR-GetBRange (i1 i2 s d -- range)

Returns puts i1 lines from list s on object d, followed by their count, on the stack, beginning with line i2.
The first line of the list will be closest to the top of the stack. See also LMGR-GetRange.

LMGR-GetCount (s d -- i)

Returns the count of lines in list s on object d.

LMGR-GetElem (i s d --)

Returns the content of line i from list s on object d.

LMGR-Getlist (s1 d -- s s' ... s'' i)

Puts the contents of list s1 on object d and the total number of lines on the stack.

LMGR-GetRange (i1 i2 s d -- range)

Puts i1 lines from list s on object d, followed by their count, on the stack, beginning with line i2. The last
line of the list will be closest to the top of the stack. See also LMGR-GetBRange.

LMGR-InsertRange (sx sx' ... sx'' i1 i2 s d --)

Inserts i1 strings (range sx sx' ... sx'') in list s on object d, beginning with line i1. Lines in the
original list positioned after i2 are shifted to later positions. See also LMGR-PutRange

LMGR-MoveRange (i1 i2 i3 s d --)

Moves the contents of the i2 lines of list s on object d, beginning at line i3, to the lines beginning at line
i1. The contents of lines i1 to i1+i2 are over-written.

LMGR-PutBRange (sx sx' ... sx'' i1 i2 s d --)

Stores i1 strings (range sx sx' ... sx'') in list s on object d, beginning with line i2. The string
at the top of the range is stored at line i2, and the remaining strings are stored on successive lines (in other
words, strings are stored in descending order). on The previous contents of the lines are over-written. See
also LMGR-PutRange and LMGR-InsertRange.

LMGR-PutElem (s1 i s2 d --)

Stores string s1 in line i of list s2 on object d. The previous contents of the line are over-written.

LMGR-PutRange (sx sx' ... sx'' i1 i2 s d --)

Stores i1 strings (range sx sx' ... sx'') in list s on object d, beginning with line i2. The string
at the bottom of the range is stored at line i2, and the remaining strings are stored on successive lines (in
other words, strings are stored in ascending order). on The previous contents of the lines are over-written.
See also LMGR-PutBRange and LMGR-InsertRange.

LMGR-SetCount (i s d --)

Sets the count of lines for list s on object d to i.

locate-prop (d s -- d')

Given a property name and dbref, locate-prop finds the property, whether on the dbref itself, an environment
of the dbref, or a proploc of the dbref. If no matching property is found, returns #-1. (Lib-Props)

long-display (d' ... d'' i --)

Prints the string form of a range of dbrefs to the user's screen, using unparse to determine the strings' format.
The start of the range is printed first. Example:

 me @ location get-contents long-display

This code duplicates the Contents portion of a server look in a room (note: the same effect could be
achieved with a single library call to 'list-contents'). (Lib-Look)

.match_controlled (s -- d)

Searches the vacinity for objects with names matching s, like .noisy_match and with similar messages for
negative or ambiguous results, but returns #-1 and prints "Permission denied." if the user does not
control the found object. (Lib-Match)

MBOX-append (range s1 s2 d -- i)

Creates a new message with base s2 on object d, with items range, on object d, appending it to existing
messages in the box. The newly-created message's number is returned. (Lib-Mesgbox)

MBOX-badref? (i s d -- i')

Returns true if message item i in the message with base s on object d does not exist. (Lib-Mesgbox)

MBOX-count (s d -- i)

Returns the number of messages contained in message box is on object d. (Lib-Mesgbox)

MBOX-create (s d --)

Creates a new message box with base s on object d with no messages in it. This consists of a property
'<base>#/i' with the string 0 stored in it. (Lib-Mesgbox)

MBOX-delmesg (refnum base dbref --)

Delete the given message number in the message box. It moves the rest of the messages after it up in the
message box.

MBOX-destroy (s d --)

Destroys message box s on object d and all of its contents. (Lib-Mesgbox)

MBOX-insmesg (range s1 i1 s2 d -- i2)

Creates a new message with the given message items and info string and inserts it before the given message
number in the message box. Returns the message's number.

MBOX-message (refnum base dbref -- {strrange})

Returns the contents of the given message number in the message box as a range of strings.

MBOX-msginfo (refnum base dbref -- infostr)

Returns the info string of the goven message number in the message box.

MBOX-ref2num (i s d -- i')

Returns the absolute message number (the number assigned when the message was created) for the message
with base s on object d with reference number i (the reference number of a message is its current position in
the message list). Note: the first message created has absolute message number 0. This is also the value that
will be returned if no message at postion i exists. Code that uses MBOX-ref2num should include error
checking to deal with this contingency. See also MBOX-num2ref and MBOX-ref2prop. (Lib-Mesgbox)

MBOX-ref2prop (i s d -- s' d)

Returns the propterty name of message number i in the message box with base s on object d. Note: The
first message created for a box, number 1, is stored in property <base>#/0 (example: "1" "+news"
trig MBOX-ref2prop would return "+news/0#" #123). This is also the the data that will be
returned if message i does not exist. Code that uses MBOX-ref2prop should include error checking to
deal with this contingency. See also MBOX-ref2num and MBOX-num2ref. (Lib-Mesgbox)

MBOX-num2ref (i s d -- i')

Returns the reference number (the current position in the message list) for the message with base s on object
d that has the absolute number i (the number assigned when the message was created). If no such message
exits, 0 is returned. See also MBOX-ref2num and MBOX-ref2prop. (Lib-Mesgbox)

MBOX-setinfo (refnum base dbref --)

Sets the info string for the given message number in the message box.

Messages

A message is a set of associated list properties consisting of a 'base' (the list name), one or more 'items' (lines
in the list), 'item strings' (the strings stored in the list, usually holding players' dbrefs or names), and an
'information' string (the content of the message). Some Lib-Mesg functions handle 'string ranges': sets of
strings adjacent on the stack, followed by their count. Multiple, related messages are stored in a propdir that
constitutes a 'message box'. Example:

 str /msgs/1#/1:2
 str /msgs/1#/2:3
 str /msgs/1#/3:13
 str /msgs/1#/i:This is the content of a message for players
 with dbrefs #2, #3, and #13.

This message has three items (1, 2, and 3) holding the item strings "2", "3", and "13" respecitively.
Its base is msgs/1. Its information string is "This is the content of a message for
players with dbrefs #2, #3, and #13." The message is stored in message box msgs.

MBOX-setmesg ({strrange} infostr refnum base dbref --)

Sets the given message number in the given message box to contain the given message items and info string.

MSG-append (s1 s2 d --)

Appends message item s1 to the message with base s2 on object d. (Lib-Mesg)

MSG-count (s d -- i)

Returns the number of items in message with base s on object d. (Lib-Mesg)

MSG-create (range s1 s2 d --)

Creates a new message with the items in a stringe range and the information string s1, stored as list
properties with base s2 on object d.

Example: The following code reads list _staff from the trigger action onto the stack as a range, and creates
a message with the contents of lvar ourString for each staff member.

 "_staff" trig LMGR-Getlist (*read list onto stack as range*)
 ourString @ (*put message on stack *)
 "st-msgs/" dup trig LMGR-Getcount (*get next available line number*)
 1 + intostr strcat (*use count to create message base*)
 trig MSG-create (*create message, stored on trig*)

 (*note: this same effect could be
 achieved more efficiently with
 MSG-append or MBOX-append*)

Assume that a staff memeber uses the stnews command (#555) with the message "Please check
'+read 17'"; that list _staff contains 5 lines, each holding a staff member's dbref in string form (2,
3, 13, 99, and 244); and that there are currently two other staff messages. In this case, the code
would put the following values on the stack:

 "2", "3", "13", "99", "244", 5, "Please check '+read 17'",
 "st-msgs/3", #555

Then, MSG-create would be called, creating propdir st-msgs/3#/, which other functions could use to
relay the message to staff members online, at log-in, or when they check staff news. Ex #555 = st-
news/3#/ would show the following values:

 str /st-msgs/3#/1:2
 str /st-msgs/3#/2:3
 str /st-msgs/3#/3:13
 str /st-msgs/3#/4:99
 str /st-msgs/3#/5:244
 str /st-msgs/3#/i:Please check 'news staff'

The data passed to MSG-create would be cleared from the stack. (Lib-Mesg)

MSG-delitem (i s d --)

Deletes message item i from the message with base s on object d. (Lib-Mesg)

MSG-destroy (s d --)

Clears and removes the message with base s from object d. (Lib-Mesg)

MSG-info (s d -- s2)

Returns the information string for the message with base s on object d. (Lib-Mesg)

MSG-insitem (s1 i s2 d --)

Inserts a new message item with string value s1 at position i into the message with base s2 on object d.
(Lib-Mesg)

MSG-item (i s d -- s2)

Returns item number i from message with base s on object d. (Lib-Mesg)

MSG-message (s d -- range)

Reads the items for the message with base s on object d onto the stack as a string range. (Lib-Mesg)

MSG-setinfo (s1 s2 d --)

Sets the s1 as the information string for message with base s2 on object d. (Lib-Mesg)

MSG-setitem (s1 i s2 d --)

Sets the value of item i in message s2 on object do the the string value 1. (Lib-Mesg)

.multi_rmatch (d s -- d' ... d'' i)

returns all objects contained by object d whose name matches string s, with the total number of successful
matches. the search string can include wildcard and grouping operators such as those used by the smatch
primitive. See also SMATCH. (lib-match)

.noisy_match (s -- d)

Checks the room, objects in the room, the player, objects carried by the player, and exits that the player may
use for objects whose name matches s, returning the dbref. Partial name strings will work, provided that
enough characters are specified to distinguish the object from other similarly named objects. The function is
'noisy' in that it supplies explanatory messages for negative or ambiguous results. If no matching object is
found, #-1 will be returned, and the string "I don't see that here!" will be printed to the user's
screen. If the match is ambiguous, #-2 will be returned, and the string "I don't know which one
you mean!" will be printed. (Lib-Match)

.noisy_pmatch (s -- d)

returns the dbref of the player with name s. the player need not be in the vacinity of the user, but the name
must be supplied completely (not case-sensitive). the function is 'noisy' in that it supplies explanatory
messages for negative or ambiguous results. if no matching player is found, #-1 will be returned, and the
string "i don't recognize anyone by that name." will be printed to the user's screen. (lib-
match)

Ranges

A number of library functions handle 'ranges': sets of related items adjacent to each other on the stack. The
documentation for these functions uses the following terms:

range:
A set of related items on the stack, and their count. Example: "mink" "otter" "linsang" 3

count:
The number of items in a range. The count of the range in the above example is 3.

offset:

The number of stack items between the range and the parameters such as 'offset', 'position', & 'number'.
That is, how 'deep' in the stack the specified range lies. Example: "mink" "otter" "linsang" 3 "wolf" The
range of three items has an offset of 1.

position:
The position of the first item in a subrange within a range. The first item in a range is at position 1.
Example: "wolf" "mink" "otter" "linsang" 3 Within this range, "mink" is at position 1, "linsang" is at
position 3, and "wolf" is at position 0.

number:
The number of items within a to handle (e.g., to copy or delete).

start:
The first item in a range, farthest from the top of the stack.

end:
The last item in a range, closest to the top of the stack.

REF-add (d1 s d2 --)

Adds dbref d2 to reflist s on object d1. If d1 is already a member of the list, it is moved to the final
position in the list. REF-add does not check to ensure that d1 is a valid dbref. (Lib-Reflist)

REF-allrefs (d s -- d' ... d'' i)

Returns the contents of reflist s on object d as a range of dbrefs (Lib-Reflist)

REF-delete (d1 s d2 --)

Removes dbref d2 from reflist s on object d1. (Lib-Reflist)

REF-editlist (i d s --)

Puts the user in an interactive editor that allows dbrefs to be added and removed from reflist s on object d.
If i is true, only player dbrefs may be added. If i is false, objects of any type may be entered. In either case,
the editor rejects invalid dbrefs. The reflist must exists, and all dbrefs contained in it must be valid. REF-
editlist displays the following header when the user enters the editor:

 To add an object, enter its name or dbref. To remove an object,
 enter its name or dbref with a ! in front of it. ie: '!button'.
 To display the list, enter '*' on a line by itself. To clear the
 list, enter'#clear'. To finish editing and exit, enter '.' on a
 line by itself.Enter '#help' to see these instructions again.

(Lib-Reflist)

REF-filter (a d s -- d' ... d'' i)

Tests each dbref in reflist s on object d in the filter function at address a, returning the those for which the
function returns true as a range of dbrefs. The filter function (supplied by your code) should return 1 for true
or 0 for false.

Example: the following code tests the dbrefs in reflist _members, stored on the trigger action, filtering out
garbage dbrefs and returning the others as a range.

 : CheckRefs

 ok? if 1 else 0 then
 ;

 : GetMembers
 'CheckRefs
 trig "_members"
 REF-Filter
 ;

In function GetMembers, 'CheckRefs (a function named joined with an apostrophe) puts a pointer to
the CheckRefs function on the stack. The next line reads the reflist onto the stack. REF-Filter then
tests each dbref in the list, using the test provided in CheckRefs: those dbrefs which are currently valid
will be returned as a range.

REF-first (d s -- d')

Returns the first dbref in reflist s on object d. (Lib-Reflist)

REF-inlist? (d1 s d2 -- i)

Returns true (1) if dbref d2 is a member of reflist s on object d1, or false (0) if it is not. (Lib-Reflist)

REF-list (d s -- s')

Returns a string containing a comma-separated list of the names of all objects with dbrefs in reflist s on
object d. (Lib-Reflist)

REF-next (d1 s d2 --)

Returns the next dbref after d2 from reflist s on object d1. If there are no dbrefs after d1, #-1 is returned.
(Lib-Reflist)

Reflists

A 'reflist' is string, stored in a property, containing space- and # octothorpe-delimited dbrefs, such as "#2
#3 #13 #3175 #244". A reflist will contain only one instance of any one dbref. Like all strings stored
in properties, a reflist is limited to 4096 characters (about 500 dbrefs).

rinstring (s1 s2 -- i)

Returns the position of the last occurance of s2 in s1, case-insensitive. The same capability is provided by
the RINSTRING primitive. (Lib-Strings)

safecall (x d --)

Calls program d, passing x (usually a string) as an argument. This routine ensures no garbage is left on the
stack by the program called, and that the variables 'me', 'loc', 'trigger', or 'command' are
unchanged: even if they are modified by program d, they will have their original values after the program
call. (Lib-Look)

setpropstr (d s1 s2 --)

Sets d's property s1 to the string value s2, or removes prop s1 if s2 is a null string. Similar capability is
provided by the SETPROP primitive. (Lib-Props)

short-display (d' ... d'' i --)

file:///home/riddochc/src/muckman/muf_rinstring

Calls short-list for the range of dbrefs on the stack, then prints "You see <contents string>"
to the user. Note: Contrary to documentation provided with @view, short-display will crash if not
passed a range of valid dbrefs containing at least one member. (Lib-Look)

short-list (d' ... d'' i -- s)

Returns a range of dbrefs as a space- and comma-separated string, punctuated and formatted intellegently.
For example, the contents of a room might be returned as

 "Kenya, Passiflora, PowerMac 7100, and Sign"

(Lib-Look)

sr-catrng (range1 range2 -- range)

Concatenates two ranges into one range. (Lib-Stackrng)

sr-copyrng (range ... offset number position -- range ... range2)

Copies a subrange of number items out of a range in the stack, beginning with the item at position. For
example,

 "a" "b" "c" "d" 4 0 3 2 sr-copyrng

would make take the 4-item stack "a" "b" "c" "d", and copy from it, making a new, 3-item range,
beginning with the second item in the 4-item range.

 "a" "b" "c" "d" 4 "b" "c" "d" 3

would be left on the stack. (Lib-Stackrng)

sr-deleterng (range ... offset number position -- range')

Deletes a subrange of number items from a range on the stack, beginning with the item at position. For
example,

 "a" "b" "c" 3 "d" 1 2 1 sr-deleterng

would delete 2 items, beginning with the first item in the range, from the 3-item range. The range has an
offset of 1: that is, there is 1 item ("d") between the range and the parameters for sr-deleterng. This
would leave

 "c" 1

on the stack. (Lib-Stackrng)

sr-extractrng (range ... offset number position -- range' ... subrange
)

Extracts a subrange of number items from a range in the stack, beginning with the item at position. The
subrange is removed from the original range, and placed on top of the stack as a new range. For example,

 "a" "b" "c" "d" 4 0 2 2 sr-extractrng

would remove 2 items from the 4-item range, beginning with the second item, leaving

 "a" "d" 2 "b" "c" 2

on the stack. (Lib-Stackrng)

sr-filterrng (range function_address -- range' filtered_range)

Passes each item in a range to the function at function_address. If this function returns a non-zero
value, sr-filterrng removes that item from range and puts it in filtered_range. The items in
range may be of any type. To determine the address of a function, preceed the function name with an '
apostrophe. For example, the following code extracts the items of type string from all items on the stack.

 : StringTest
 string? if 1 else 0 then
 ;

 : PullStrings
 depth 'StringTest sr-filterrng
 ;

Calling PullStrings with

 #123 "a" "b" 666 "c"

should leave

 #123 666 2 "a" "b" "c" 3

on the stack. Unfortunately, this potentially useful function does not work as advertised. The code above will
actually leave

 #123 "a" 666 3 "c" "b"

on the stack. (Lib-Stackrng)

sr-insertrng (range1 ... range2 offset position -- range)

Inserts a subrange into a range on the stack, between the items at position and position + 1. (Lib-
Stackrng)

sr-poprng (range1 --)

Removes a range from the stack. Also defined as popn in lib-stackrng. The same capability is
provided by the POPN primitive. (Lib-Stackrng)

sr-swaprng (range1 range2 -- i range2 range1)

Swaps two ranges on the stack, inserting a 0-length range before the two ranges. There must be x items on
the stack below range1, where x is equal to the larger of range1's count or range2's count. That is,

 "" "a" "b" 2 "c" "d" "e" 3 sr-swaprng

would crash due to stack underflow, but

 "" "null" "null" "null" "a" "b" 2 "c" "d" "e" 3 sr-swaprng

would put

 "" "null" "null" "null" 0 "c" "d" "e" 3 "a "b" 2

on the stack. For this reason, it will often be necessary to copy a 'work space' range with sr-copyrng
before using sr-swaprng. (Lib-Stackrng)

std-index-add (d s1 s2 s3 -- d s1 s2 s3 i)

Like index-add, this routine adds name s2 and value s3 to index s1, stored on object d. All four items
are left on the stack unchanged, and error code i is returned: 1 is 'no error: item added', 0 is
'error: name already a member of index; index unchanged'. See also Indexes and
index-add. (Lib-Index)

std-index-add-sort (d s1 s2 s3 -- d s1 s2 s3 i)

Alphabetically adds a name/value pair to an index, like index-add-sort, but leaves all four items on the
stack, returning error code i: 1 is 'no error: item added', 0 is 'error: name already a
member of index; index unchanged'. In theory, it should add the name to the index in
alphabetical order, but in practice and like index-add, it simply adds the name to the end of the index.
See also Indexes and index-add-sort. (Lib-Index)

std-index-delete (d s1 s2 -- d s1 s2)

Removes name s2, and its associated value, from index s1 on object d, with no error checking. All three
items are left on the stack unchanged. See also Indexes and index-delete. (Lib-Index)

std-index-envmatch (d s1 s2 s3 -- d s1 s2' s4 i)

Performs an environment match like index-envmatch, using the match criteria specified in paramater
string s3. Arguments d and s1 are left on the stack; parameter string s3 is returned as null string s4. See
also Indexes and index-envmatch. (Lib-Index)

std-index-first (d s1 s2 s3 -- d s1 s2' s4)

Takes object to holding index (d), an index name (s1), and two null strings (s2 and s3). Returns four items,
with s2 being replaced by s2', the first name in the index. See also Indexes and index-first. (Lib-
Index)

std-index-last (d s1 s2 s3 -- d s1 s2' s4)

In theory, takes object to holding index (d), an index name (s1), and two null strings (s2 and s3), returning
four items, with s2 being replaced by s2', the last name in the index. In practice, s2' will still be a null
string. See also Indexes and index-last. (Lib-Index)

std-index-match (d s1 s2 s3 -- d s1 s2' s4 i)

Performs a name match like index-match, using the match criteria specified in parameter string s3.
Arguments d and s1 are left on the stack; parameter string s3 is returned as null string s4. See also Indexes
and index-match.(Lib-Index)

std-index-next (d s1 s2 s3 -- d s1 s2' s3)

Takes object holding index (d), an index name (s1), a name (s2), and a null string (s3), returning the four
items with s2 modified to s2', the name in the index immediately following s2. See also Indexes and
index-next.(Lib-Index)

std-index-prev (d s1 s2 s3 -- d s1 s2' s3)

Takes object holding index (d), an index name (s1), a name (s2), and a null string (s3), returning the four
items with s2 modified to s2', the name in the index immediately preceding s2. See also Indexes and

index-prev.(Lib-Index)

std-index-remove (d s1 s2 s3 -- d s1 s2 s3 i)

Takes object holding index (d), an index name (s1), a name (s2), and a null string (s3), and removes name
s2 and its associated value from the list. The four initial arguments and an error code are left on the stack. See
also Indexes and index-remove.(Lib-Index)

std-index-set (d s1 s2 s3 -- d s1 s2 s3)

Adds a name/value pair to an index, with no error checking, like index-set. All four items are left on the stack
unchanged. See also Indexes and index-set.(Lib-Index)

std-index-value (d s1 s2 s3 -- d s1 s2' s4)

Performs a match for name s2 in index s1 on object d, using matching criteria specified in parameter string
s3. The dbref and index name are left on the stack unchanged. Name s2 is returned in complete form
(partial matches are expanded). Returns the value associated with name s3 as string s4. If the match was
unsuccessful, s4 will be a null string. See also Indexes and index-value.(Lib-Index)

std-index-write (d s1 s2 s3 -- d s1 s2 s3 i)

Sets a value for an existing index member, like index-write, but leaves all four items on the stack and
returns an error code. See also Indexes and index-write.(Lib-Index)

.std_table_match (x1 x2 sn pn ... s1 p2 i sm -- sx px | x1 | x2)

The standard table match takes i comparator/data pairs in the same manner as .table_match, and
performs a SMATCH on each comparator, matching against string sm. Comparators must be strings; it is not
necessary to supply a matching functin and its address. .Std_table_match returns the comparator/data
pair that matchs sm, or x1 if no match was found, or x2 if more than one match was found. See also
.table_match and SMATCH. (Lib-Match)

str-desc (s --)

Prints s as a description, matching the '@###' and '@$prog' values properly, and uses them with the
present trigger value. If neither of these exist, or if they are invalid, the string is simply printed. The string is
not parsed for MPI. (Lib-Look)

STRasc (s -- i)

Converts character s to its ASCII number equivalent. The same capability is provided by the CTOI
primitive. (Lib-Strings)

STRblank? (s -- i)

Returns true if s null string or only spaces. (Lib-Strings)

STRcenter (s i -- s)

Centers s in a field i characters wide.

 "Welcome to " "muckname" sysparm 78 STRcenter .tell

...would display a welcome line including the name of the MUCK centered for a standard screen. (Lib-
Strings)

STRchr (i -- s)

Converts ASCII code number i to its character equivalent. The same capability is provided by the ITOC
primitive. (Note: the header document for Lib-Strings lists the name of this funtions as STRchar, but this is
incorrect: use STRchr.)

STRfillfield (s1 s2 i -- s3]

Returns a string consisting of as many characters s2 as would be needed to concattenate with s1 to create a
string i characters long. Useful for aligning columns of output.

 me @ name " " 20 STRfillfield strcat

...would return...

 "Jessy "

(Lib-Strings)

STRleft (s i -- s)

Returns s, padded with trailing spaces to a string length of i characters. (Lib-Strings)

STRright (s i -- s)

Returns s, padded with leading spaces to a string length of i characters. (Lib-Strings)

STRrsplit (s1 s2 -- s3 s4)

Splits s1 on last occurence of delimiter string s2.

"#add here=detail=chair" "=" STRrsplit

...would put...

"#add here=detail", "chair"

...on the stack. If s1 does not include s2, s3 will be identical to s1 and s4 will be a null string. The same
capability is provided by the RSPLIT primitive. See also STRsplit. (Lib-Strings)

STRsts (s -- s')

Strips leading spaces from s. The same capability is provided by the STRIPLEAD primitive. (Lib-Strings)

STRsls (s -- s')

Strip trailing spaces from s. The same capability is provided by the STRIPTAIL primitive. (Lib-Strings)

STRsms (s -- s')

Strips multiple internal spaces from s.

 "It's a long way to Tipperary" STRsms

...would return...

 "It's a long way to Tipperary"

(Lib-Strings)

STRstrip (s -- s')

Strips leading and trailing spaces from s. The same capability is provided by the STRIP primitive. (Lib-
Strings)

STRsplit (s1 s2 -- s3 s4]

Splits s1 at the first occurence of delimiter string s2.

 "mink otter linsang" "otter" STRsplit

...would put...

 "mink ", " linsang"

...on the stack. If s1 does not include s2, s3 will be identical to s1 and s4 will be a null string. The same
capability is provided by the SPLIT primitive. See also STRrsplit. (Lib-Strings)

.table_match (x1 x2 cn pn ... c1 p1 i x3 address -- cx px)

This function tests successive pairs of 'comparator' and 'data' elements with a separate function (that you
create), returning the pair that (according to your function's criteria) 'matches'. Although .table_match is
supplied as a matching function, it can have other applications: the comparator/data pairs in effect constitute
a hash table, and the 'matching' function can perform whatever operations you require.

.Table_match takes parameters x1 — the item to be returned if no match is found — and x2 — the item
to be returned if more than one pair matches. x1 and x2 can be of any type. Example: #-1 and #-2 are the
conventional items used to indicate negative or ambiguous match results for objects of type dbref. These
parameters are followed by comparator/data pairs: the comparator is the item to be tested for a match; the
data item is a stack item associated with the comparator. An integer specifying the number of such pairs to be
tested is then supplied, followed by the value x3 — which will be used to test the match — and the address
of the testing function. The testing function should return 1 for true results and 0 for false results.
.Table_match returns the comparator/data pair that matches (cx px), or the paramters for negative or
ambiguous results (x1 or x2)

Example: Suppose you want a function supplementing .pmatch and .noisy_pmatch that can find
players by 'nicknames', which are often set as a player's %n property. One way (among many possibilities) to
create such a function would be to supply comparator/data pairs of players' %n properties and their dbrefs,
and calling .table_match. The nickname to be matched is stored in lvar ourString. Function
GetPairs puts the prop/dbref pairs and their count on the stack. Function CheckNick performs a
SMATCH, returning 1 if a comparator matches ourString, and 0 if it does not. Code for calling
.table_match might then look like this:

 #-1 #-2 GetPairs ourString @ 'CheckNick .table_match

If a player calls the program with a search for "Dr. Cat", and GetPairs returns three players who have
%n nicknames (and thus are candidates for possible matches) the stack created by this code might have
values such as the following immediately before .table_match is called:

 #-1, #-2, "the Scamper Gal", #2, "the terribly velvet-furred linsang",
 #13, "Dr. Cat" #244, "Dr. Cat", 'CheckNick

#-1 and #-2 are the codes .table_match is to return for negative and ambiguous matches. The next six
items on the stack are three comparator/data pairs: The dbrefs of players #2, #13, and #244, paired with

their nicknames. The next item (the second occurance of string "Dr. Cat") is the string to be matched,
which was fetched from lvar ourString. 'CheckNick — a function name preceded by an '
apostrophe — is a pointer to the address for the CheckNick function.

In this case, the results are not negative or ambiguous: one of the players does have the nickname to be
matched: player #244 is Dr. Cat. .Table_match would clear all the above data from the stack, and
return...

 "Dr. Cat", #244

See also .std_table_match. (Lib-Match)

unparse (d -- s)

Returns the name of object d, concattenated with its dbref and flags (such as "Bulletin
Board(#177S)") if the user controls object d. If the user does not control d, or if the user is set
Silent, only its name is returned ("Bulletin Board"). (Lib-Look)

when (x --)

Performs a TRUE|FALSE condition test within a case statement. See header for lib-case. (Lib-Case)

4.0 TUTORIALS
This section provides tutorials on how to use the commands and programs discussed throughout The MUCK
Manual to perform common tasks and projects. Note: in many cases, there is more than one way to
accomplish the goal.

• 4.1 Using the List Editor
• 4.2 Making a Multi-Action
• 4.3 Making Puppets
• 4.4 Making Vehicles
• 4.5 Building Rooms and Areas
• 4.6 Archiving Your Belongings

4.1 Using the List Editor
Lists (introduced in Commands Overview: Lists) are the MUCK equivalent of files or documents: adjacent,
related props hold lines of text, which together make up a list. Lists allow you to include formatting
information such as paragraph breaks and indentation in descriptions and other text output. Lists are normally
created and edited using the list editor, command lsedit..

If you have used a line editor before, such as UNIX's ex, the MUCK list editor will seem familiar and easy
to use. But if your only experience with text editors has been through screen editors such as Notepad or
Simpletext, or WYSIWYG word processors, the list editor will definitely take some getting used to.

With a line editor, you work with individual lines of text or with groups of lines, rather than seeing all lines at
the same time, with your position in the file marked with a cursor. In order to see the contents of the list, you

will need to enter a command that causes text to be displayed. Similarly, you need to enter explicit
commands to move around in the list and tell the editor which line you are working with.

The following is a walk-through of using the list editor to give a room — a lounge on a high-tech world — a
two-paragraph description.

The syntax for lsedit is lsedit <obj> = <list name>. <Obj> here is the object holding the props
that make up the list. We do not necessarily have to store the list on the room, but since the list holds the
room's desc, it makes sense to do so. The list name can be anything we like. We'll call it 'desc', just to keep
things simple. So, to get started we start the list editor:

> lsedit here = desc
< Welcome to the list editor. You can get help by entering '.h' >
< '.end' will exit and save the list. '.abort' will abort any changes. >
< To save changes to the list, and continue editing, use '.save' >
< Insert at line 1 >

At this point, we can either type in the text directly, or we can copy text from a text editor on our client
computer, and paste it into our MUCK client's window (often a better choice).

Let's say that we enter the following description for the room, using either method:

 This lounge, one notices immediately, is oddly anacoustic: something
 -- perhaps the walls covered in a short-nub, grey carpet, perhaps the
 somewhat unusual layout of shoulder-high, paper-thin partitions
 between groups of tables, or perhaps the alcoves set into the walls --
 something seems to swallow sound here. Footfalls fall muted;
 conversations coalesce into a low, murmuring susurrus.

 A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inhces below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.

When we enter the text, nothing seems to happen. Did we successfully enter it? To see the contents of our
list, we can type .l (to list the lines, without line numbers) or .p (to print the lines, with line numbers.)

> .l
 This lounge, one notices immediately, is oddly anacoustic: something
 -- perhaps the walls covered in a short-nub, grey carpet, perhaps the
 somewhat unusual layout of shoulder-high, paper-thin partitions
 between groups of tables, or perhaps the alcoves set into the walls --
 something seems to swallow sound here. Footfalls fall muted;
 conversations coalesce into a low, murmuring susurrus.
 A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inhces below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.
 < listed 2 lines starting at line 1 >

> .p
 1: This lounge, one notices immediately, is oddly anacoustic:
 something -- perhaps the walls covered in a short-nub, grey carpet,
 perhaps the somewhat unusual layout of shoulder-high, paper-thin
 partitions between groups of tables, or perhaps the alcoves set into

 the walls -- something seems to swallow sound here. Footfalls fall
 muted; conversations coalesce into a low, murmuring susurrus.
 2: A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inhces below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.
 < listed 2 lines starting at line 1 >

Hmmm... This looks more or less ok, but a couple things have happened to our text as it has been processed
by the list editor. Our paragraphs are each currently in one long line, and the blank line that separated them
has disappeared.

Truly blank lines get 'swallowed' by your client, and never make it to the MUCK or the list editor. So, if we
want to put blank lines in a list, we need to put a space or two on the line to hold its place. We decide that we
do want a blank line separating our paragraphs here, so we use lsedit's .insert command (syntax .i
<line to insert>), and enter a couple spaces on line 2.

> .i 2
 < Insert at line 2>
> (...we type a couple spaces here...)
> .p
 1: This lounge, one notices immediately, is oddly anacoustic:
 something -- perhaps the walls covered in a short-nub, grey carpet,
 perhaps the somewhat unusual layout of shoulder-high, paper-thin
 partitions between groups of tables, or perhaps the alcoves set into
 the walls -- something seems to swallow sound here. Footfalls fall
 muted; conversations coalesce into a low, murmuring susurrus.
 2:
 3: A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inhces below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.
 < listed 3 lines starting at line 1 >

We could leave our text in long lines, one per paragraph, but sometimes clients have trouble with line
wrapping. If we leave it like this, it's possible that a few players will not be able to see all the text.
Lsedit's .format command (syntax .format <start line> <end line> = <columns to
format to>) will break the lines up into reasonable lengths.

> .format 1 3 = 76
 < Formatted 3 lines starting at line 1 (Now curr line) to 76 columns. >
> .p
 1: This lounge, one notices immediately, is oddly anacoustic: something --
 2: perhaps the walls covered in a short-nub, grey carpet, perhaps the somewhat
 3: unusual layout of shoulder-high, paper-thin partitions between groups of
 4: tables, or perhaps the alcoves set into the walls -- something seems to
 5: swallow sound here. Footfalls fall muted; conversations coalesce into a
 6: low, murmuring susurrus.
 7:
 8: A seemingly continuous tube of cobalt blue neon adorns the room, running
 9: along the walls eight inches below the ceiling. Its eye-thwarting hue
 10: reflects in dabs and streaks from the furniture: the tables, chairs,
 11: barstools, and the bar itself... sleek amalgamations of stainless steel,
 12: glass, and buffed black leather. Behind the bar, between shelves holding

 13: ornate bottles, sits a single bonsai tree, its tortured form hilighted in
 14: the beam of a hidden drop light.
< listed 14 lines starting at line 1 >

So, we successfully inserted a blank line, separating our paragraphs. But on second thought, this isn't how we
want to format it. The blank line will break things up too much: the first paragraph will seem to 'go with' the
name of the room, and the second paragraph will seem to 'go with' the room's contents list. The desc itself
won't look like a unified whole on the screen. So, we decide instead to delete the blank line (using
lsedit's .delete command, syntax .del <line to delete>), and indent the paragraphs two
spaces, using lsedit's .indent command.

The syntax for .indent is .indent [<first line to indent> [<last line to
indent>]] = <number of spaces to indent>. That looks somewhat complicated when
expressed formally, but it's not difficult in practice.

Some examples...

This indents the current line by five spaces:

> .indent 5
 < Indenting 1 lines starting at line 2, 2 columns. >

This indents line 14 by five spaces:

> .indent 14 = 5
 < Indenting 1 lines starting at line 14, 2 columns. >

This indents lines 18 to 20 by five spaces:

> .indent 18 20 = 5
 < Indenting 3 lines starting at line 18, 2 columns. >

So, back to our main example: in the list editor, working with our 'desc' list for a room, we want to delete line
7 (the blank line) and indent the two remaining lines by two spaces.

> .del 7
 < Deleting 1 lines, starting at line 7 (Now current line) >
> .indent 1 = 2
 < Indented 1 lines starting at line 1, 2 columns >
> .indent 7 = 2
 < Indented 1 lines starting at line 7, 2 columns >
> .l
 This lounge, one notices immediately, is oddly anacoustic:
 something -- perhaps the walls covered in a short-nub, grey carpet,
 perhaps the somewhat unusual layout of shoulder-high, paper-thin
 partitions between groups of tables, or perhaps the alcoves set into
 the walls -- something seems to swallow sound here. Footfalls fall
 muted; conversations coalesce into a low, murmuring susurrus.
 A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inhces below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.

OK, this is looking good. But we need to make one last change. In the process of working with the list, we
notice a typo in line 8 of the second paragraph: 'inhces' should be 'inches'. We want to fix that, and

would rather not have to retype everything. The right tool for the job here is lsedit's .replace
command (syntax .repl <line number> = /<old string>/<new string>)

> .repl 8 = /inhces/inches
 < Replaced. Going to line 8 >
 8: along the walls eight inches below the ceiling. Its eye-thwarting
 hue

Now, finally, an important point, we need to get out of the list editor. (Forgetting to get out of the list editor,
and typing a bunch of commands into the list you were just working on is a fairly common mishap.) To do
so, type .end, on a line by itself.

> .end
 < Editor exited. >
 < list saved. >

So we're done! Or are we? We do a 'look' to see the final product, and get a disappointment. The desc
doesn't show up. So far, we have created the list, but we haven't told the server to display this list as the
room's desc. To do so, we need to set the room's desc with a bit of MPI that will cause the newly created list
to be displayed when people look at the room.

> @desc here = {list:desc}
 Description set.
> l
 This lounge, one notices immediately, is oddly anacoustic:
 something -- perhaps the walls covered in a short-nub, grey carpet,
 perhaps the somewhat unusual layout of shoulder-high, paper-thin
 partitions between groups of tables, or perhaps the alcoves set into
 the walls -- something seems to swallow sound here. Footfalls fall
 muted; conversations coalesce into a low, murmuring susurrus.
 A seemingly continuous tube of cobalt blue neon adorns the room,
 running along the walls eight inches below the ceiling. Its
 eye-thwarting hue reflects in dabs and streaks from the furniture: the
 tables, chairs, barstools, and the bar itself... sleek amalgamations
 of stainless steel, glass, and buffed black leather. Behind the bar,
 between shelves holding ornate bottles, sits a single bonsai tree, its
 tortured form hilighted in the beam of a hidden drop light.

Voila! We're done.

4.2 Making a Multi-Action
Over time, many players end up creating several handy little macro commands that provide shortcuts for
frequent tasks, or create rooms that have a number of specific, local commands. Rather than creating a
separate action for each command (an approach that quickly leads to dbase bloat and eats up your quota), you
can combine a number of commands in a single action. The basic technique is to give the action an alias
name for each command, store MPI strings in properties with the same names as the aliases, and use the
command name typed by the user to determine which property should be executed.

The following example creates a multi-action that lets you determine the dbref of something in the same
room, enter or review a page of 'to do' notes, and remotely lock or unlock the door into your home. First,
create the action attached to your character, and lock it to a condition that always fails. Since the action is
attached to you, no one else should be able to use it... Nonetheless, it would be a good idea to secure the exit
by linking it to something, such as a do-nothing program.

> @act ref;note;notes;lockhome;unlockhome = me
 Action created with number 9456 and attached.
> @lock ref = me&!me
 Locked.
> @link ref = $nothing
 Linked to gen-nothing.muf(#363FLM2).

The lock will fail unless the user is and is not you... it will always fail. Now, set the action's @fail with an
MPI string that will cause other MPI strings stored in properties on the object to be executed.

> @fail ref = {exec:{&cmd}}
 Message set.

{&cmd} is a variable... it holds whatever command name the user typed. If you used the action by typing
'ref', then the string 'ref' would be substituted for {&cmd} when the @fail is parsed; if you used
the the action by typing 'notes', then 'notes' would be substituted for {&cmd}.

{exec} evaluates the property following it, executing any MPI contained in it, and returning any resulting
strings to the user. So, typing 'notes' would cause the 'notes' property on the object to be evaluated:
{&cmd} would be replaced by 'notes', and {exec} would use this value to determine which property it
should evaluate.

Now, set a property for each alias, containing MPI that performs a function. One of the simplest ways to do
this, is to force yourself to use a command. In order to do so, you need to be set X(forcible) and
force_locked to yourself.

> @set me = X
 Flag set.
> @flock me = me
 Force lock set.

> @set ref =ref:{ref:{&arg}}
 Property set.
> @set note =note:{force:me,lsedit notes=notes}
 Property set.
> @desc note ={list:notes}
 Description set.
> @set notes =notes:{force:me,look notes}
 Property set.
> @set lockhome =lockhome:{force:me,@lock #17212=me&!me}
 Property set.
> @set unlockhome =unlockhome:{force:me,@unlock #17212}
 Property set.

The one action can now be used to do several different things. Typing 'ref here' would show the dbref
of the room you are in ({&arg}, like {&cmd}, a variable: it holds whatever was typed following the
command name. If you typed 'ref here', the &arg variable would hold the string 'here'). Typing
'note' would force you to use lsedit to edit your page of notes. Typing 'notes' would force you to
look at the notes: the list would be printed on your screen. Typing 'lockhome' would force you to lock the

exit into your home, specifying it by dbref so that it doesn't matter where on the MUCK you are located.
Typing 'unlockhome' would unlock the exit in the same way.

(Notice that several of the actions world by 'forcing' you to do something. This is an easy way to make little
macro commands. However, be aware that in order for it to work, you must be set 'Xforcible', and you must
be 'force_locked' to yourself. So, do the following as well:

> @set me=X
 Flag set.
> @flock me=me
 Locked.
)

A single multi-action like this can be extended indefinitely, by adding aliases and a corresponding prop. To
add a 'look at my watch and check the time' function, you could rename the action and set a 'watch' property
that uses simple MPI.

> @name ref = ref;note;notes;lockhome;unlockhome;watch
 Name set.
> @set watch = watch:You glance at your watch. The time is {time}.
 Property set.

> watch
 You glance at your watch. The time is 14:18:46.

4.3 Making Puppets
A puppet (or 'zombie') is a player-like object of type thing, set up so that it can move and act independently,
relaying everything it sees and hears to the controlling character.

In the strictest sense, all that is required to turn an object into a zombie is to set its Z(ombie) flag. This will
cause it to relay messages, and to be treated as a zombie by programs which distinguish between zombies and
players. In practice, two other steps are required to create a working puppet: locking and setting the puppet so
that it can be forced, and creating an action to control it. First, create the puppet object. Since the puppet will
often be in a different location than your character, it's a good idea to give it a registered name as well. Then,
set its Z(ombie) flag.

> @create Squiggy == pup
 Squiggy created with number 128629.
 Registered as $pup
> @set squig = Z
 Flag set.

Next, set the puppet's X(forcible) flag, and force_lock it to you.

> @set squiggy = X
 Flag set.
> @flock squiggy = me
 Force lock set.

It would be possible to stop at this point, and use the @force command to make the puppet do what you
want.

> @force $pup =:jumps!
 Squiggy jumps!

In practice, it will be more convenient to create an action that simplifies frequent typing. Use an action name
that's short and easy to type, and won't conflict with other common exit names. 'Z' is a frequently used
command name for controlling a zombie. Then, link the action to a do-nothing program, lock it to a condition
that always fails, such as 'me&!me', and set its fail with an MPI string that forces the puppet.

> @act z = me
 Action created with number 128630 and attached.
> @link z = $nothing
 Linked to do-nothing.muf(#197FLM2)
> @lock z = me&!me
 Locked.
> @fail z = {force:$pup,{&arg}}
 Message set.

'&arg' is a variable: it holds whatever was typed after the command. If you typed 'z :jumps!', &arg
would hold the string ':jumps!'. The fail set on the control action would force the puppet with
':jumps!'.

> z :jumps!
 Squiggy jumps!
> z out
 Squiggy heads out to the park.
 Squiggy has departed.
 Squiggy> You head out to the park...
 Squiggy> Alcot Park
 Squiggy> A sweep of close-cropped green grass extends...

As indicated in the example above, output from the puppet is preceded with the puppet's name, and a >
greater than symbol to distinguish it from your own output. This prefix string can be changed with the
@pecho command: @pecho <puppet object> = <prefix string>

> @pecho squiggy = *
 Message set.
> z look
 *Alcaot Park
 *A sweep of close-cropped grass extends...

4.4 Making Vehicles
MUCK has a rather limited set of server commands for using vehicles: objects configured such that players
may get inside them, and see what happens outside the vehicle. Many MUCKs also have more elaborate MUF
programs for vehicles. But, since these will vary widely from MUCK to MUCK, only the server vehcile
commands are discussed here.

A vehicle is in many ways much like a puppet. Whereas a puppet is created by setting the Z(ombie) flag
on an object of type THING, a vehicle is created by setting the V(ehicle) flag on an object of type
THING. Puppets broadcast anything hearable in their location to their owner; vehicles broadcast anything
hearable in their location to all players inside the vehicle. The preface string marking puppet output is set
with the @pecho commmand; the preface string marking vehicle output is set with the @oecho command.
As with puppets, it is usually necessary to force_lock the vehicle to users who are allowed to drive (or
fly or steer) it, and to create an action that implements this. One significant difference between puppets and
vehicles: you need to create an action that lets you get inside a vehicle. This done by creating an action that is
both attached and linked to the vehicle:

> @create 1967 Corvette Sting Ray
 1967 Corvette Sting Ray created with number #558.
> @set 1967 = V
 Flag set.
> @act getin = 1967
 Action created with number #559 and attached.
> @link getin = 1967
 Linked to 1967 Corvette Sting Ray(#558V)
> drop 1967
 Dropped.
> getin
 1967 Corvette Sting Ray(#558V)

To describe the interior of the vehicle, use the @idesc command:

> @idesc here = The 'vette's interior is pristine: gleaming chrome,
 smooth blue vinyl, and rubbery floormats.
> look
 The 'vette's interior is pristine: gleaming chrome, smooth blue
 vinyl, and rubbery floormats.

You do not need to create an action that takes you out of the vehicle: the server command leave will do this
for you.

You do, however, need to set up an action that will let you control the vehicle. The action will work by
forcing the vehicle, so it needs to be set X(forcible) and force_locked to you.

> @set 1967 = X
 Flag set.
> @flock 1967 = me
 Force lock set.

If you wanted anyone to be able to drive the vehicle, you would need to set the force lock to something that
would succeed for all players, such as @flock 1967 = !#0.

To make an action that controls the vehicle, create an action as normal, attached to the vehicle, lock it to a
condition that always fails, and set its @fail message with MPI that forces the vehicle to act as specified by
the action's argument:

> @act drive = 1967
Action created with number 560 and attached.

> @lock drive = me&!me
Locked.
> @fail drive = {force:#558,{&arg}}
Message set.
> drive :vroom vrooOOOOmms!
Outside> 1967 Corvette Sting Ray vroom vrooOOOmms!
> drive n
Outside> (... the vette goes north; we see the appropriate output)

By default, all emits outside the vehicle will be broadcast to the vehicle's interior, prepended with the string
outside>. You can change this prepend string with the @oecho command:

 (Outside the vehicle, Holbrook waves.)
 Outside> Holbrook waves.

> @oecho 1967 = >>>
 Message set.

 (Holbrook waves again for us.)
 >>> Holbrook waves again.

Note: Soft-coded look, pose, and say commands may alter the behavior of vehicles from what is described
here.

4.5 Creating Rooms and Areas
Quality MUCK building requires a blend of creativity and technical savvy. At a minimum, you should ensure
that rooms in your areas are literately desc'd, and that exits have the standard message props (@desc,
@succ, @osucc, and @odrop).

The building commands are discussed elsewhere in the manual. What follows is a narration of building a
village inn, with cross-references to relevant commands. The process should illustrate most of the issues a
builder will face. Only two rooms are discussed, but the same techniques could be used over a much larger
area.

Creating an Environment Room:
If you are building an area, as opposed to one or a few rooms for personal use, it's a good idea to parent the
area to an environment room. Doing so will allow you to create commands that can be used throughout the
area, and will let you do a backup of your work with a single @archive command. As discussed in Section
2.2, rooms by default have the same parent room (or environment room) as the room from which they are are
created. A room can be reparented by @teleporting it to a new environment room. A reasonable
approach to building an area is to @dig an environment room, @dig the first room in the area with the just-
created environment room as its parent, and move to the new room before creating additional rooms in the
area. This way, standard @dig commands will cause the additional rooms to be parented to the area's
environment room.

> @dig Amberside Environment Room (create the environment room)
 Amberside Environment Room created with room number 4801.
> @register #4801 = aer (give it a registered name for easy access)
 Now registered as _reg/aer:Amberside Environment Room(#4801) on
 Shadowkat(#1131PBJ)
> @set $aer = A (set env room Abode, so it will show up in @trace)
 Flag set.
> @dig Amberside Inn: Tavern = $aer
 Amberside Inn: Tavern created with room number 4802.
 Trying to parent...
 Parent set to Amberside Environment Room(#4801RA).
> @register #4802 = ai (register this too, since we'll be going there)
 Now registered as _reg/ai:Amberside Inn: Tavern(#4802) on
 Shadowkat(#1131PBJ)
> @tel me = $ai (go there)
 You feel a wrenching sensation...
 Amberside Inn: Tavern(#4802R)
 Teleported.

If system parameters on your MUCK are set such that you cannot teleport to your new room, it will be
worthwhile to create a personal exit that takes you there, for use while you are building the area. After the
area is built and linked to the rest of the MUCK, you can recycle it.

> @act ai = me
 Action created with number 4803 and attached.
> @link ai = $ai
 Linked to Amberside Inn: Tavern(#4802)
> ai
 Amberside Inn: Tavern(#4802R)
> @trace here
 Amberside Inn: Tavern(#4802R)
 Amberside Environment Room(#4801RA)
 Environment: Lowlands(#285RA)
 Rainforest Parent Room(#121RWA)
 Rainforest: Main Parent(#118RA)
 Master Environment(#101RA)
 Missing

The Amberside Environment Room is parented to Environment: Lowlands(#285RA), because we
were under it when we issued the first @dig command. This may be where we want it when the area is
finished, or there may be some other area of the MUCK that is more suitable. After the area is finished, you
would contact the MUCK's builder wiz and discuss where to put the area. For now, the current location
should be fine. Additional rooms that we @dig while under The Amberside Environment
Room(#4801RA) will automatically be parented to there.

> @dig Amberside Inn: West Wing
 Amberside Inn: West Wing created with room number 4804.
> @trace #4804

 Amberside Inn: West Wing(#4804R)
 Amberside Environment Room(#4801RA)
 Environment: Lowlands(#285RA)
 Rainforest Parent Room(#121RWA)
 Rainforest: Main Parent(#118RA)
 Master Environment(#101RA)
 Missing

One way we could make use of the enivonment room is to provide a command available throughout the area
we are building, and only in that area. If we make an action called map;look map;loo map;lo
map;l map, attaching it to the environment room, and setting its @succ to display a list with and ASCII
map of the area, users will be able to view a map of the area from anywhere within it.

> @act map;look map;loo map;lo map;l map = $ae
 Action created with number 4805 and attached.
> @link map = $nothing
 Linked to do-nothing.muf(#97)
> @succ map = {list:the_map,this}
 Message set.
> lsedit map = the_map

 (insert map)

Creating and Propping Exits:
To avoid leaving floating rooms lying about, it's a good idea to create the exits linking rooms immediately
after @digging the rooms. As discussed in Section 2.3, exit names can include aliases: alternate names,
separated by semi-colons, that can be used in place of the full name. The first alias is the one that will be
shown by obvious-exits programs. A common and worthwhile convention is to set the first alias as a
combination of the full name and a notation indicating valid abbreviated aliases.

And, since putting message props on exits is the kind of niggling detail that's easy to forget if you leave it to
later, it's also a good idea to set the message props immediately after @opening the exits.

> @open West Wing <W>;west wing;west;w = #4804
 Exit opened with number 4805.
 Trying to link...
 Linked to Amberside Inn: West Wing(#4804R)
> @desc w = A sturdy wooden door leading to rooms on the west wing.
 Description set.
> @succ w = You pull open the door to the West Wing hallway...
 Message set.
> @osucc w = goes into the West Wing.
 Message set.
> @odrop w = comes in from the Tavern.
 Message set.

Exits are one way: in order to create a 'door' between rooms, you need two exits, one leading in each

direction. So, we complete the door between the Tavern and the West Wing by going to the West Wing and
making another exit leading back to the Tavern. We gave the Tavern the registered name 'ai', so it will be
easy to link back to. But, if we had not done this, and the room's dbref had scrolled off the screen, we could
determine it with the @find command.

> w
 You pull open the door to the West Wing hallway...
 Amberside Inn: West Wing(#4804R)
> @find tavern
 Amberside Inn: Tavern(#4802R)
 End of List
 1 objects found.
> @open Tavern ;tavern;t;east;e = #4802
 Exit opened with number 4806.
 Trying to link...
 Linked to Amberside Inn: Tavern(#4802R)
> @desc t = A strong wooden door.
 Description set.
> @succ t = You open the door into the inn's tavern.
 Message set.
> @osucc t = goes into the Tavern.
 Message set. > @odrop t = comes out of the west hallway. Message set.
> t
 You open the door into the inn's tavern.
 Amberside Inn: Tavern(#4802R)

We gave the exits user-friendly aliases, but the exits are not showing up at all when we look at the room. The
server 'look' command, and most user-created look programs as well, do not show obvious exit lists by
default. In order to have such a list appended to our rooms' descriptions, we will need to set the @succ
message on the rooms to trigger an obvious-exit programs. You will probably need to page a wizard or
helpstaff member to determine the dbref or registered name of such a program. As discussed in Section 2.1.4,
the dbref or regname of MUF programs triggered by message props need to be prefaced by an @ at-mark.

> l
 Amberside Inn: Tavern(#4802R)
> p jessy = Hiya... Can you tell me the dbref or regname of the
 obvious exits program?
 You page, "Hiya... Can you tell me the dbref or regname of the
 obvious exits program?" to Jessy.
 Jessy pages, "It's dbref #183... reg name $obvex."
> p = OK, thanks.
 You page, "OK, thanks." to Jessy.
> @succ here = @$obvex
 Message set.
> l
 Amberside Inn: Tavern(#4802R)
 Obvious Exits:
 West Wing <W>

We will need to set this @succ message on all rooms in the area for which we want obvious-exit lists.

Describing Rooms:
Room descs are a somewhat demanding genre. You need to convey a sharp sense of place in a very brief
space. You often need to describe a number of rooms with similar characteristics without becoming
repetitive. The description often needs to incorporate cues that geographically orient the player. Since other
events online are competing for the reader's attention, your writing needs to be exceptionally clear. The
following discussion first covers technical aspects of setting room descs, then offers some editorial
suggestions for writing them.

As with any other object, the description of a room can be set with the @desc command. And, as with any
other object, you may want to do some hanky-panky with lsedit and MPI to provide formatting
(indentation, paragraph breaks, etc.) or flexibility (dynamically generated text describing the time of day,
players present, or random events). A desc string bracketted with an MPI {eval} function will cause any
MPI in the desc itself to be parsed. The following description of the tavern uses this technique to include the
names of present players in the description.

> @desc here = {eval:{list:maindesc,here}}
 Description set.
> lsedit here = maindesc
 < Welcome to the list editor. You can get help by entering '.h' >

 < '.end' will exit and save the list. '.abort' will abort any changes.
>
 < To save changes to the list, and continue editing, use '.save' >

 > Insert at line 1>
 The tavern is little changed from days when pirate sloops found haven
 in the coves nearby: the beams are still low and smoke-stained, the
tables
 still rough-hewn and knife-hacked, the floorboards still trecherously
 uneven. What light there is comes from three flickering oil-lamps and a
 sharp-scented wood fire burning steadily on the hearth. Glasses and
 bottles along the back wall catch and toss the dim, moving light. The
 innkeeper standing easily behind the bar is a grave of secrets.
 {eval:{prop:_folks,here}}
 .end
 < Editor exited. >
 < list saved. >
> @set here=_folks:{if:{commas:{lremove:{contents:here,player},
{owner:me}}},
 {commas:{lremove:{contents:here,player},{owner:me}}, and ,item,{name:
 {&item}}} are here\, at various places in the room,Currently\, you're
the
 only other one here}.
 Property set.

If you don't want formatting such as paragraphs or the two-space indentation in the example above, it would
be more efficient not to embed the desc in a list

> @desc here = The tavern is little changed from days when pirate sloops
 found haven in the coves nearby: the beams are still low and smoke-,
 stained, the tables still rough-hewn and knife-hacked, the floorboards
 still trecherously uneven. What light there is comes from three
flickering
 oil-lamps and a sharp-scented wood fire burning steadily on the hearth.
 bottles along the back wall catch and toss the dim, moving light. The
 innkeeper standing easily behind the bar is a grave of secrets.
 {eval:{prop:_folks,here}}
 Description set.

Including queues that indicate looktraps and local commands is a common and helpful convention. A clueful
MUCKer would deduce from the following room desc that it's worth taking a look at the innkeeper and sign:

> @desc here = The tavern is little changed from days when pirate sloops
 found haven in the coves nearby: the beams are still low and smoke-,
 stained, the tables still rough-hewn and knife-hacked, the floorboards
 still trecherously uneven. What light there is comes from three
flickering
 oil-lamps and a sharp-scented wood fire burning steadily on the hearth.
 bottles along the back wall catch and toss the dim, moving light. The
 'innkeeper' standing easily behind the bar is a grave of secrets.
 {eval:{prop:_folks,here}} There is a small 'sign' sitting
 on the end of the bar.
 Description set.

> @open ip;is = $nothing (create a local command)
 Exit opened with number 4808.
 Trying to link....
 Linked to do-nothing.muf(#97)
> @succ ip = {exec:{&cmd}}
 Message set.
> @set ip = ip:{null:{tell:Ishmael {&arga}},{otell:Ishmael {&arg}}}
 Property set.
> @set is = is:{null:{tell:Ishmael growls, "{&arg}"},{otell:Ishmael
growls, "{&arg}"}}
 Property set.
> @set is = D (set the exit dark, so it won't show up as an obv-exit)

 (set some looktraps to indicate the presense of local commands)
> @set here=_details/innkeeper:Call him Ishmael. This ancient wolf looks
 old enough to have been on a first name basis with the aforementioned
 pirates. ('look sign')
> @set here=_details/sign:{list:signtext}
 lsedit here = signtext

 < Welcome to the list editor. You can get help by entering '.h'
>
 < '.end' will exit and save the list. '.abort' will abort any changes.
>
 < To save changes to the list, and continue editing, use '.save'
>
 < Insert at line 1 >

 The innkeeper, Ishmael, is interactive:

 ip <pose> Ishmael <pose>
 is <comment> Ishmael growls, "<comment>"

 .end
 < Editor exited. >
 > list saved. >

> l sign

 The innkeeper, Ishmael, is interactive:

 ip <pose> Ishmael <pose>
 is <comment> Ishmael growls, "<comment>"

> is What will you have, stranger?
 Ishmael growls, "What will you have, stranger?"

(Note that we avoided creating a puppet object for Ishmael... the room desc says that he's here, and a named
object in the room's contents list is not really necessary for our purposes. Also, the two commands — 'ip' and
'is' — are created using one exit object, and we could modify the action to provide additional local
commands using the multi-action technique discussed in Section 4.2. It is especially worthwhile to follow
such dbase-conserving practices when building large areas.)

Some builders feel that the obvious exit list after room descs is intrusive and artificial looking. If you decide
not to use an obvious exit list, you should include text in the desc that will tell a careful reader which ways
she can go.

> @desc here = The tavern is little changed from days when pirate sloops
 found haven in the coves nearby: the beams are still low and smoke-,
 stained, the tables still rough-hewn and knife-hacked, the floorboards
 still trecherously uneven. What light there is comes from three
flickering
 oil-lamps and a sharp-scented wood fire burning steadily on the hearth.
 bottles along the back wall catch and toss the dim, moving light. The
 innkeeper standing easily behind the bar is a grave of secrets.
 {eval:{prop:_folks,here}} There is a small 'sign' sitting
 on the end of the bar. A sturdy wooden door opens onto a hallway
 to the west; another, at the front of the tavern, opens onto the

 village green.
 Description set.

Modern graphic workstations can display a huge amount of text, but the standard computer terminal only
displays a screen 80 characters wide and 24 lines tall. While standard character terminals may seem obsolete
to some, it's worthwhile to respect this 'lowest common denominator': a number of people do still access
M*'s through standard terminals... either UNIX/Linux computers on which they have chosen not to install or
run graphics, or virtual terminals being run from a shell account. Further, the vast majority of these UNIX
folks will be using TinyFugue as their client. With TinyFugue's 'visual' mode turned on, the bottom four lines
are used as a typing window. Additionally, not all clients can display the full width of 80 characters. So, if
you want people to be able to see the entire desc in one screen (a good thing to strive for), you should limit
descriptions to a 78 x 20 field of text. You can choose to violate this guideline, of course, and often will be
justified in doing so... but be aware of the tradeoff you make.

A further 'less-is-more' point: a common mistake made by new builders is to create rooms that serve only to
provide a way to get from point A to point B. A forest path leading from the stream to the glade, a foyer
leading from the street to office lobby, etc. Such rooms (and the extra exits required to link them) seldom
earn their keep: they take up extra space in the database, eat up your quota, and make the area feel bland or
'loose'. As an alternative, consider setting detailed @succ and @drop messages that convey a sense of travel
over a distance. Or, in cases where the effect is still too fast and a greater sense of distance is required,
consider writing or using a program that generates a travel event of some sort (one such program is provided
here).

Writing Room Descriptions:
Your rooms are your rooms: The MUCK Manual makes no claim to be an authoritative source on the 'right'
way to write room descriptions. At the same time, a few basic techniques — some of which would be
presented in any creative writing course, and some arising from the specific nature of this very specific genre
— may prove helpful as you work to make your building memorable and enjoyable.

Favor the Specific over the General

As does a narrative essay or work of fiction, a room desc strives to evoke a sharp sense of place... to give the
reader the information necessary to vividly imagine the scene and to vicariously experience it, as though she
were there. Specific information serves this purpose much more effectively than general information. It is
much easier to visualize 'a white picket fence clambered with Morning Glory' than it is to visualize 'a fence'...
and this is true even if we don't know exactly what a Morning Glory looks like. When faced with a choice
(and writing is in its essence a continuous stream of choices), always give the specific instance first
consideration over the general case. Put the 'top-heavy dahlia, just beginning to lose its petals' into your desc,
rather than the 'flower'. Furnish the conference room with 'wobbley chairs with stainless steel legs and orange
naugahide seats, that look like they were stolen out of dorm rooms', rather than 'seats' or 'chairs'. Let your
too-slick cardshark smoke a 'Romeo y Julietta Bellicoso' or 'Montecristo No. 2' rather than simply 'a cigar'.

Appeal to Multiple Senses

Many builders rely too heavily on the sense of sight. Use this to your advantage: make your own rooms stand

out, favorably, in contrast, by appealing to multiple senses. Do include visual description — show your
reader the tropical water's seductive shadings of blue and green and the fractured dance of sunlight on its
surface — but complement these with the tawdry and insistent call of the seagulls, the weighty smell of
seaweed, the congenial contest between warm sunlight and a chill seabreeze, and the wholesome tang of salt
when an unexpected burst of spray gifts the lips.

Use Active Verbs

The much-maligned passive voice (using some form of 'to be' as the verb of a sentence) has valuable uses in
all forms of writing, and one should regard prose purists who insist that is inherently inferior with grave
suspicion. Nonetheless. In place descriptions, active verbs do help bring energy and verve to the writing,
especially when the subject matter itself is passive or static. Consider the following:

The gentle surf polishes the tiny bits of jade, amethyst, and sapphire that dot the expanse of dark
obsidian sand, extending forever out under the clear bluegreen water of the Dragon Sea. Transparent,
crystalline crabs dance over the sands, plucking a particularly scintillating grain now and then for the
tiny hoards upon their backs. Sweeping back towards the northern woods, the warm black sand
borders square patches of cool grass, following the checkered pattern of a harlequin's breast. The sand
stretches to the west and east, past a low outcropping of obsidian to the southeast, where the entrance
to a little cove is visible. Various homes can be seen interspersed with the trees to the north. Hanging
low in the southern sky, you can make out the silhouette of the Floating Island. A directory of the local
homes is posted on a tree.

(Cymoryl's Shimmer Beach, on FurryMUCK)
The surf 'polishes' the stones. The crabs 'dance' and 'pluck'. The shoreline 'sweeps' this way, and 'stretches'
that way. There is little doubt that this desc would have been much less effective had Cymoryl relied on the
passive voice.

Use Contrast

When trying to convey a specific tone or feeling, guard against sounding the same note throughout the
description. Instead, use contrast to focus the reader's awareness of the desired tone or feeling. Consider: if
we want to convey a sense of snug warmth, we could write a description saturated with details such as warm
blankets, coals in the fireplace, thick walls, and so forth. But the reader might be better able to experience the
desired effect if we instead provide several contrasting details — cold drafts lurking about the baseboards,
and a still, star-lit night outside, with ice-flowers of frost forming on the window — and then provide close
narration of being bundled in ample quilts, with only our noses peeking out.

Consider Providing a 'Focus'

Most of the guidelines offered so far would apply to narrative writing at least as strongly as they do to desc
writing. But in some ways the demands of the two forms are very different. One of these differences has to
do with 'pace' or 'rhythm'. In narrative, you usually want to create a sense of flow and continuity. MUCK
rooms, however, exist 'by themselves' to a greater extent than paragraphs or scenes from a narrative. Rooms
are discrete 'pieces', that need to be judged on their own merits, with relatively little consideration to what
went before or comes after (something you cannot control in the same way that a narrative writer can).

Sometimes, we take special care to convey a room's relationship to other nearby places (we describe the path
leading down to the stream, the hill just above this field, the ridge leading on to the plateau) and we describe
a number of aspects of the room itself (the flowers speckling through the field's grass, the surrounding trees,
the sky), and the result is... unaccountably bland. Quite often, this can be traced to a failure to give the reader
something to focus on. Everything present is there because of its relationship to something else, and there is
no single visual or logical point that gives the room an identity of its own. So... if a room description just
doesn't seem to work, try providing a single, specific, dominant feature, preferably near the beginning or end
of the description, rather than buried in the middle. The field room in our parenthetical examples here might
be saved by inclusion of a focal feature such as a fire pit in its center, or a lone, towering pine, or a monolith
of some sort.

Consider Using 'Catelogues'

The writers of ancient epics had a nifty trick: they evoked very specific constellations of connotation and
emotion simply by listing things. Lots of things. Homer did not have resources such as a wide screen or a
symphony orchestra to convey the pagentry and thrill of the Achean forces setting out for Troy. He had
words, and one way he used them was the 'epic catelogue': instead of saying that a thousand ships set forth,
he listed them... and who was on them... and who their parents were... and what they took with them. The
cummulative effect builds and builds, and by its close the audience has not only a great deal of information
but also, in effect, 'a recipe for a feeling'. These ships, these men, these weapons... and in such numbers.
When the audience has this in mind, it cannot help but experience a unique and vivid effect.

When writing a room desc, you must work on a much smaller canvas, but the technique can be adapted. Try
evoking a place or a world by simply listing salient figures and objects within it. Consider the following:

Olevin Causeway
The Causeway connects Sidney-Down-Over and the Ambly Island Spaceport, but is a world unto
itself. Street merchants working from ramshackle stalls extol light sabres and life insurance, armorlite
and absynthe, chronometers and Chrysellian fire oil. Strolling vendors insistently offer vibrablades,
nebutol, and ice cream. Prophets and prostitutes hawk their wares, the former with greater passion, the
latter with greater conviction. A crowd of drunken spacers skip Stellars on the heaving waters. A
slumming heiress keeps ennui at bay for one more night, and the eyes of a starving child ask a
question with no answer.

Homer it is not, but the list does convey the jaded, carnevalesque atmosphere of the Causeway in a small
amount of screen space.

Consider Directly Addressing the Reader

Most accomplished builders avoid directly addressing the reader, because doing so forces an intrusive
editorial presence upon the reader. This is a good rule to follow. But, like all the guidelines here, you might
want to consider breaking the rule occassionally. Just be aware when you are doing so. Some readers
consider the following desc too intrusive; others consider it highly effective.

 Bedroom Loft
Yes, the ceiling is a bit low, the angles a trifle confining. But was there ever a better place to lie in a
loved one's arms? Can you see the sailing moon outside the dormer window? Can you smell the faint
but bracing scent, of cedar and lavendar, of musk and the night and something from your childhood?
Turn down this faded quilt... Slip between these cool sheets... Unfold into this repose, and in it create

yourself anew.

4.6 Archiving Your Belongings
The @archive command (syntax @archive <object>) 'decompiles' objects. That is, it examines them,
and then outputs the commands that would be necessary to recreate them. Unless you simply want to create
an epic amount of spam, you need to capture this output in some way in order to make use of it. The normal
way is to use your client to start a log file, and then issue the @archive command, then close the log. The
resulting file can be used to recreate the object(s) if you accidently mess them up, or if the MUCK experiences
database loss or corruption, or if you want to move the object to a different MUCK. To do so, simply quote or
paste the file into your client window on the destination MUCK.

The command operates in a recursive fashion: a single @archive command will decompile the specified
object, and any objects contained within it. This is usually a good thing: you can, for example, @archive
an entire area with a single command by @archiving the area's parent room. But a minor warning: if you
issue the command while you are in the area, your character object will be archived as well. This isn't a
calamity, but it's probably not the best approach. The resulting archive file will be much larger than it needs
to be, and if you quote it back without deleting the portions that apply to your character, you will get a great
many error messages. So, if you want to @archive a room or area, do so by moving to a remote location
before issuing the @archive command. (You can, of course, @archive your character as well... it's a
good idea in fact. You would need the help of a wizard to recreate the character object, but once this is done,
you could use the file to return your character to a previous state).

In the following example, we @archive the area created in the previous tutorial, using the logging
commands for the TinyFugue client. Other clients will have other logging commands.

> gohome (leave area, so character won't be archived)
 ShadowKat's Lair
 .
 .
 .

> /log amberside
> @archive $ae
 .
 .
 . (lots of text scrolls by)
 .
 .
> /log off

That's all there is to it! Since the @archive command is recursive, and since the whole area is — directly or
indirectly — contained within the environment room referenced by the registered name $ae, the whole area
will be @archived.

To recreate the area, we would simply quote the log file:

> /quote -S 'amberside

It is normal to see a few error messages when you recreate something from a log file. Common causes are
exits that cannot be properly relinked because they led to something not included in the log and restricted
properties that the @archive command could read but that you cannot set when you quote the file. Other,
less obvious problems are sometimes caused by dbrefs included in properties: if you are moving the object to
a different MUCK, these dbrefs will now be inaccurate. The effects of this will vary, but regardless you need
to examine and test objects recreated from archive files.

5.0 ADMINISTERING A MUCK
Putting a MUCK online, creating a world that will attract players, and dealing with the minor and major crises
that will inevitably crop up over time is an inherently demanding and time-consuming task. For most, though,
it is a labor of love, and the burdens can be shared among staff members. Administering a MUCK involves
both technical and non-technical issues. Both can be quite insistent and pressing during a MUCK's early,
formative stages: there are innumerable technical details to attend to, and the small population creates an
artificially incestuous atmosphere in which non-technical issues — especially personality conflicts — easily
get blown out of proportion. As the world develops and attracts players, things stabilize, but both issues will
remain. On the technical side, problems of dbase management and backward compatibility will replace the
tasks of getting everything working right. On the non-technical side, player relations and changing levels of
commitment from staff members will come to the fore. Both sets of issues are discussed in this section of the
Manual.

5.1 Technical Issues

5.1.1 Selecting a Site
Of the various matters you'll need to consider, selecting a site is in many ways the easiest. You need a 7 x 24
connection to the Internet and a stable IP address, for a machine running some version of UNIX, with
permission to run a constant process. This may reduce the number of options to one or none. If it's one, the
decision is made: go with the site you have. If it is none, and you're set on running a MUCK, your options are:

1. Buy 7 x 24 access, with a stable IP address. In most markets, at the current time, this costs about
$100 per month. You will of course also need a computer at the receiving end of that connection.

2. Find someone who will let you run a MUCK on their site. This is not impossible. Both requests and
offers for sites appear rather frequently on the rec.games.mud.announce newsgroup. Bulletin board
posts and public shouts on large M*'s may well turn up altruists: the freeware and volunteerism ethos
remains alive and well in the M* universe.

If you are in the fortunate position of being able to choose sites, consider the following factors:

1. Connection reliability, connection speed, and sizable RAM are all more important than processor
speed. A MUCK can be run quite successfully on a '486 under Linux. A faster CPU is of course nicer,
especially if you do other things on the machine, but in all likelihood, processor speed is the last
bottleneck you'll hit.

2. It's hard to judge connection reliability ahead of time. If you know someone who works on a site
you're considering, or at least through the same ISP, solicit their feedback.

3. Faster connection hardware is, obviously, better than slower hardware. A 28.8 modem is adequate,
but an ISDN is better. The new cable modem and ASDN links would work quite nicely. A T1 or
partial T1 connection is also acceptable.

4. Hardware is not the only consideration for connection speed. Some ISP's simply cannot provide
reliably fast connections. Sometimes this is their own fault (they sold more bandwidth than they
have), and sometimes it's due to factors beyond their control (the ISP's ISP sold more bandwidth
than they have, or the whole set up is situated behind some chronic bottleneck). You can get a rough
idea of comparative speeds by doing a traceroute to sites under consideration. The first hops shown
will be those on your end of the connection, and are less relevant: other user's won't have to make
those hops. The last several hops, however, are telling. If one site consistently posts better times than
another on the last two or three hops, this is worth taking into consideration. Although the times you
see are in scant milleseconds, final hops of more than 300 - 400 milleseconds may indicate a
bottleneck at the server. Also, try pinging the sites (ping <address>) and comparing the
indicated times. Let ping run for a couple minutes, then stop it with ctrl-c. You should see a
percentage for 'packets lost'. Dropped packets have to be resent, which significantly slows
transmissions between a client and server.

5. You need adequate RAM. MUCK is memory-based. That is, it keeps the database loaded in RAM while
operating. If this results in a process larger than available RAM, portions of memory are frequently
swapped to disk ('paged'). This causes a significant degradation in performance. So, have enough
memory: for a small MUCK, it's not a lot. A dbase with 2500 objects should create a process of 4 - 4.5
megs.

The ideal is to run the MUCK on a machine that you own: compiling the server will be considerably easier,
and you'll be able to restart the MUCK quickly in the case of a power outage or other failure. Console access is
also a significant security consideration: see Section 5.1.4

5.1.2 Compiling a MUCK
UNIX gurus and C buffs should have little difficulty compiling a MUCK. For the rest of us, it is a potentially
frustrating experience. This section of the manual is addressed to the rest of us: sysadmins and C developers,
you can use this time to go toggle in a new kernal from the front panel of a PDP-11, just to keep your hand
in.

MUCK is not a shrink-wrapped, plug-and-play product. It is, rather, a large freeware application developed
over a number of years by skilled coders who are willing to devote innumerable hours to making something
for other people to use and enjoy. It is assumed that you — the site administrator — have reasonable facility
with the UNIX operating system and a basic understanding of how to configure the program by editing C
source code configuration and header files. In other words, like UNIX itself, MUCK is quite user-friendly, but
rather choosy about who its friends are. The following overview may help you get on speaking terms with
your new server.

It is of course madness to try to set up a MUCK without knowing UNIX. Nonetheless, people often try, and

often succeed. A good book on UNIX will be a worthwhile investment if you are going to be the MUCK's
site administrator.

If the set up goes smoothly — that is, if your system has everything where MUCK expects it to be — this
information should be all you need. If you encounter compilation errors, you'll need to enlist help. Those
sysadmins and C developers will be through toggling in their microkernals by the time you've gotten that far,
and will no doubt be MUCK'ing somewhere. Go to a large MUCK, and try a public shout, or paging
helpstaffers and wizards, asking if someone can lend a hand compiling a MUCK.

Getting your server up and running involves the following steps:

1. Getting a compressed, archived file containing the source code.
2. Uncompressing the files.
3. Editing configuration files
4. Compiling the source code
5. Specifying database files
6. Starting and logging onto the server

Getting the Server
The MUCK platform has evolved over a number of years, from TinyMUD, written by James Aspnes, to its
current incarnation: TinyMUCK, FuzzBall version 6.0, developed primarily by Garth Minette. The most
current and authoritative version should be available at ftp.belfry.com/pub. You may want to get the archive
of standard MUF programs and a start-up database as well.

1. pub/fuzzball/fb6.0.tar.gz
2. pub/fuzzball/fbmuf.tar.gz
3. pub/fuzzball/basedb.tar.gz

Put the fb6.0 file where you want the top level of your MUCK directory to go, perhaps in your home
directory.

Uncompressing the Files
The files you just got are compressed archives of a great many files and directories.

To uncompress them, type gunzip <filename>. For example

 gunzip fb6.0.tar.gz

If you get something like gunzip: command not found, try unzip:

 unzip fb6.0.tar.gz

This uncompresses the archive. You now need to extract individual files from the archive with the tar
command ('tar' for 'tape archive').

 tar -xvf fb6.0.tar

The switches -xvf tell the system that you want to eXtract files from an existing archive File, and that you'd
like it to do so Verbosely, so you can see what it's doing.

Type ls to 'list files' in your current directory. You should see, among other things, an entry for fb6.0/
(the / slash may or may not appear). This is the directory holding the server.

If you got the dbase and MUF files, move them to the correct spots in the server directories...

 mv fbmuf.tar.gz fb6.0/game/muf
 mv basedb.tar.gz fb6.0/game/data

... and change directories (cd) down to the directories holding the files and unpack them in the same fashion.

Editing the Configuration Files
In directory fb6.0, you should see a file called INSTALLATION. It gives succinct instructions for setting
up the MUCK. Type cat INST* to list it on your screen.

You will be editing a few files (include/config.h, game/restart, and possibly
include/params.h or include/autoconf.h). It is strongly recommended that you make a copy
of these files before you start modifying them, so you can start over if something obscure goes wrong. In the
appropriate directories...

 cp config.h config.bak
 cp params.h params.bak
 cp autoconf.h autoconf.bak
 cp restart restart.bak

You can either edit the files directly on the server, with text editors such as vi or pico, or you can
download the files to your computer, make changes, and then upload them. Hereafter, the Manaul will simply
instruct you to 'edit' the files; do so in whatever way works best for you.

Much of what you'll be doing when editing these files consists of 'defining' or 'undefining' terms. A term is
defined by beginning a line with the #define preprocessor directive, followed by the term and (optionally)
its definition.

If a term is defined without a definition, such as...

 #define GOD_PRIV

... this simply means that the term is 'true': the compiler can in effect check 'Are we using God privileges?',
and get a yes/no answer. In this case, the term is defined; it has a true value: so, yes, we're using God
privileges.

If a definition is supplied, then the term is true, and has a specific value. For example,

 #define TINYPORT 8000

This means that, yes, we do have a specified default port to connect to: port 8000.

You can 'undefine' a term in either of two ways: you can comment it out, or you can explicitly undefine it. To
undefine a term, use the #undef preprocessor directive:

#undef ANONYMITY

To comment out a term (that is, to change it into a comment that people can read, but to be ignored by the
compiler), enclose it in the strings '/*' and '*/'

/* #define DISKBASE */

In general, you should #undefine terms rather than commenting them out: doing so will undefine the
term, even if it was defined somewhere else.

You won't need to change a very much.

In include/config.h:

Edit the file to the port you want to use.

 #define TINYPORT 8000

Port numbers below 1024 are reserved for system processes; use something higher than 1024, and lower than
65,534.

It's recommended that you leave all other settings the same, until you're familiar with each of them and have
a specific reason for changing them.

You shouldn't need to change anything in include/params.h.

In game/restart:

This file is a shell script, a set of commands that execute conditionally, rather like a DOS batch file. In
addition to starting and restarting the MUCK, it does some logging and error checking: it bails out if the
MUCK is already running, so you won't have duplicate processes running, keeps a log of when the MUCK was
restarted, and warns of conditions such as missing or damaged database files, or insufficient memory. You
will need to make a couple changes to this file.

Near the top of the file, change the line which sets the variable holding the path name for the MUCK. If you
left the name of the directory created when you un-tar'd the server as fb6.0, and didn't rename any sub-
directories in the server directory, you would set the path variable as follows:

 set GAMEDIR = $HOME/fb6.0/game

The port number needs to be specified in restart as well:

 set PORT = 8000

The server process is called 'netmuck' (the executable file that actually runs the server is 'netmuck').
'Restart' includes necessary references to 'netmuck'. On sites that have several M*'s running, it's
polite to rename 'netmuck' to something else, or to call it by an alias, so that the sysadmin can tell at a
glance what's what. If you're running the MUCK on your own machine, and know you'll only have one MUCK,
the following step can be omitted.

Find the line that says...

 You probably won't need to edit anything after this line.

... so you'll know where to start making changes. A few lines into forbidden territory, you'll see the following
line:

 set muck = 'ps -aux | grep netmuck | wc -l'

Replace the word 'netmuck' with something indentifiable as your MUCK. If your MUCK is called
'Vanity Fair', you might change it to:

 set muck = 'ps -aux | grep VanFair | wc -l'

And, the second to last line of the file:

 ./netmuck $DBIN $DBOUT $PORT >& logs/stdouterr.log &

Change 'netmuck' here too.

 ./VanFair $DBIN $DBOUT $PORT >& logs/stdouterr.log &

Compiling the Source Code
Now it's time to compile the server.

A very brief rundown on what's happening here: In addition to information files like README and
INSTALLATION, and the server you just downloaded consists of quite a few files of 'source code'... human-
readable text files written in the C programming language. You'll use the 'make' and 'configure' utilities to
create machine-executable code from the source files.

Change directories to game/src, the directory holding the source code. Type 'configure'. This
determines what flavor of UNIX you're running under, the location of certain files and executables, and so
forth. This part should be quite straightforward. If it's not — if you get messages such as 'No processor
installed' or 'Welcome to Macintosh' — log onto a large MUCK and find someone who can
help.

Now, the (first) moment of truth: while still in game/src, type 'make'. Watch arcane messages scroll
by. Then, when they seem to have all done so, type 'make install'. Watch more arcane messages.
You may see some labled 'Warning'. As long as the warning isn't followed by a 'Fatal error',
you should be OK. (Fatal errors are bad.)

If you get other compilation errors at this point, you'll need to track down a guru to help you out. Again,
wizzes, helpstaff, and @shouts on large MUCK's are a good place to start looking for one.

Once you have the server compiled, you should tidy up a bit. In the compilation process, a number of 'object
files' were created... Object files are intermediate files created as the compiler generates the executables.
After compiliation, you don't need them any more; they just take up disk space. In the game/src directory,
type 'make clean' to get rid of them.

Specifying Database Files
You need to provide the server with a database to use at start up. You can use either the minimal database
included with the server, or the standard start-up database included in basedb.tar.gz. The minimal
database includes only two objects: Room #0, and God, player #1. The start-up database includes about 70
objects, including important programs and a couple rooms.

The start-up database is of course more convenient, but you may wish to use your own versions of the
programs or to set aside some low dbrefs for players and other important objects. If you use the start-up
database, the first objects you create will have dbrefs in the high 60's.

The minimal database is, well, minimal. You'll need to do a bit more work to get the place going, but you'll
have greater control.

The files to be used for the database are defined in the 'restart' script. We didn't change those: the
server will expect to find files 'std-db.db', 'std-db.old', and 'std-db.new'. The default file
names are fine, but we need to create the files themselves.

In directory game/data... If you're using the start-up database

 gunzip basedb.gz

This should create a file named 'basedb.db'. Type ls to make sure. If it created something else, use
that file name below:

cp basedb.db std-db.db
cp basedb.db std-db.old
cp basedb.db std-db.new

If you're using the minimal database:

cp minimal.db std-db.db
cp minimal.db std-db.old
cp minimal.db std-db.new

These commands will make copies of the database file where the server expects to find them.

Starting and Logging onto the Server
You're now almost ready to start the MUCK. One last thing... If you're on a public site, and edited the restart
script changing 'netmuck' to something like 'VanFair', you need to either rename 'netmuck', or
create an alias for it.

In the 'game' direcectory, type ls. You should see file 'netmuck'. Rename that file with the
following command:

 mv netmuck VanFair

If you made a copy of the restart file, you may need to make it executable at this point:

 chmod +x netmuck

...in the final column.

Now, type './restart'. You should see some messages like 'restarting at <time>'.

Type 'ps -aux'. This will list all the processes running on the machine. If all is right with your world,
you should see a process for it, a line with something like...

 ./VanFair data/std-d

...in the final column.

If you see too much stuff, and can't tell if the server process is in the list, filter it with the grep:

 ps -aux | grep VanFair

Quick and Dirty Trouble-Shooting
If the MUCK compiled correctly (you didn't get errors when compiling, and you have a file named
'netmuck' in your game directory), but you don't have a process running, then something went awry in the
restart script. You should confer with your sysadmin or some other knowledgable UNIX-type about it.
Meanwhile, though, you can use a simplified restart script. If the problem truly is in the restart script, and not
in the server, this should get you up and running while you enlist outside help.

Move your current restart script to another file for safe keeping:

 mv restart restart.cp2

Edit a new, simplified restart script, that includes the following three lines:

 mv data/std-db.db data/std-db.old
 mv data/std-db.new data/std-db.db
 ./VanFair data/std-db.db data/std-db.new 8000 >& logs/stdouterr.log &

('VanFair' and '8000' are specific to our example: use the MUCK name and port number for your
MUCK.)

Make the new script executable:

 chmod +x restart

This script won't provide all the error checking and logging that the full-blown one will, but there's also less
to go wrong in it. With the new script in place, type './restart' again.

(A common reason for the restart script to fail: You are running your MUCK on a server that is also hosting
other MUCKs, and neither you nor the other MUCK admins renamed 'netmuck'. Because the restart script
uses this file name to see if the server is already running when you try to restart, and bails out if so, your
restart script fails because it sees someone else's MUCK running as a netmuck process. The fix: rename
netmuck and edit the restart script appropriately.)

We'll assume that you now have a MUCK process running. Congratulations.

Now you need to log on. There is only one character on the MUCK... #1, who is probably named 'One'.
#1's initial password is 'potrzebie'. Connect to the MUCK with your normal client, and log in:

 connect #1 potrzebie

If you're running the minimal database, type @stats: savor this pristine and perfect universe.

*** IMPORTANT: CHANGE #1's PASSWORD ***

It is imperative to change God's password from the default.

 @password potrzebie = <whatever>

You're done!

5.1.3 Setting Up the Database
Growing the database into a lively and attractive world is of course an on-going, never-ending process. When
you're just starting out, the primary concerns are installing the necessary programs and setting up some kind
of organization.

Initial Tidiness:

If you used the minimal database with an eye toward setting aside low dbrefs for Very Important Players and
the like, @create some things to hold the dbrefs until needed, before you create other objects.

 @create 2
 @create 3

 @create 4
 @create 5
 .
 .
 .
 etc.

Then, when you want to use a low dbref for a player, @recycle the appropriate object and immediately
@pcreate.

> @rec #2
 Thank you for recycling.
> @pcreate Agamemnon = bartlegast
 Player Agamemnon created as object #2.

Setting up at least a minimal environment tree now, while things are manageable, also saves effort later on.
Most MUCKs end up with a storage room for MUFs, a room for new players to start in, and a guest room.
Most also have a central meeting place. Use whatever structure you like, but something like the following
should work well while you're getting started:

 Room #0
 |
 Main Environment Room
 | |
 IC Environment Room OOC Environment Room
 | |
 Village Well |_ Guest Room
 |_ Player Start
 |_ MUF Vault

(See Section 2.2 for information on parenting rooms.)

Porting Global Programs:

The files provided in the fbmuf.tar are a genuine help. These are upload scripts that not only provide
necessary programs, but also set up necessary exits, macros, and properties. To install them, uncompress and
extract the files ('gunzip fbmuf.tar.gz', 'tar -xvf fbmuf.tar'), and quote, paste, or upload
the resulting files onto the MUCK, using whatever method works best for you.

The file for cmd-@register should be uploaded first: the other upload scripts will use the @register
command in installing the programs. Next, install the libraries, in the following order:

• lib-strings
• lib-stackrng
• lib-props
• lib-lmgr
• lib-edit
• lib-editor

• lib-match
• lib-mesg
• lib-mesgbox
• lib-reflist
• lib-index
• lib-case
• lib-look

(Note: The README file in fbmuf lists 'lib-case' as 'lib-cases'. You will need to quote it by the name given
here, 'lib-case'.)

The remaining programs can be installed in any order.

If you're not uploading scripts from fbmuf.tar, you'll need to install all the programs 'by hand'. Even if
you are using fbmuf.tar or the standard database, you will need to install some programs without the
benefit of a script. The following gives an example of porting a library; the same techniques can be used for
any program. First, get the code, perhaps by @listing and logging the program on an established MUCK.
The example uses the logging and quoting syntax for TinyFugue; other clients will have different syntax.

On the established MUCK...
> /log lib-props
 % Logging to file lib-props
> @list $lib/props

 <output output output>

> /log off

On your MUCK...
> @prog lib-props
 Program created with number 26.
 Entering editor.
> i
 Entering insert mode.
> /quote -0 'lib-props
> .
> c
 Error in line 78: Unrecognized word lines.
> 78 l
 77 lines displayed.
> 78 d
 1 lines deleted.
> c
 Compiler done.
> q
 Editor exited.

As the example indicates, listing and quoting a program picks up an extra, unwanted line: the @list

command follows its output with a line indicating how many lines of program code were listed... 77 in this
case. You need to remove that line, either with a text editor on your system, or — as in this example — by
uploading, compiling, noting and deleting the offending line, and then re-compiling.

Once you have the program compiled, you need to set its flags appropriately. All libraries should be set M3
and L; lib-lmgr, lib-props, and lib-reflist should also be set S, B, and H. Lib-look
should be set S. Other programs should be set with whatever flags they have on the MUCK you're porting
from.

Libraries — and other programs frequently used by players, such as do-nothing and obv-exits — will
need to be registered. You can do this either with the @register command, or by setting the property
directly.

> @reg lib-props = lib/props
 Now registered as _reg/lib/props: lib-look(#26FLM3) on Room Zero(#0R)

or...

> @propset #0 = dbref:_reg/lib/props:#26
 Property set.

Some programs will also need properties set. For libraries, this information is readily available with the
@view command; for other programs, you will probably need to get a wizard or the program owner to help
you view the props.

> @view $lib/look
 Command to view: @list $lib/props=1-20
 Run this command? (y/n)
> n
 Read definitions? (y/n)
> y
 .envprop = "$lib/props" match "envprop" call
 .envsearch = "$lib/props" match "envsearch" call
 .locate-prop = "$lib/props" match "locate-prop" call
 .setpropstr = "$lib/props" match "setpropstr" call
 envprop = "$lib/props" match "envprop" call
 envsearch = "$lib/props" match "envsearch" call
 locate-prop = "$lib/props" match "locate-prop" call
 setpropstr = "$lib/props" match "setpropstr" call

The first bit of output in this series...

 Command to view: @list $lib/props=1-20

...tells you that the program documentation appears in lines 1 - 20 of the program. To set things up so that
players on your MUCK can view the program, set the _docs property on the program:

> @set lib-props = _docs:@list $lib/props=1-20
 Property set.

The definitions are stored in propdir _defs/ on the program object. They provide information needed for

calling programs to communicate with the library. The definition...

 .envprop = "$lib/props" match "envprop" call

... means 'Where a program that uses this library contains the word '.envprop', use the function 'envprop'
in this library'.

Set the _def properties for each definition.

> @set lib-props = _defs/.envprop:"$lib/props" match "envprop" call
 Property set.
 <Etc. Copy, find/replace, and paste are your friends.>

Setting up libraries is also discussed in Section 3.2.2, MUF Libraries.

Other Porting Considerations:

Permission: all programs in fbmuf.tar and the start-up database are in the public domain. For other
programs, you should make a good faith effort to honor the conditions for porting programs. Read the
program's header comment, looking for notes about permission and/or the author of the program. If the
program says it can't be ported without permission, don't: instead, contact the program's author and ask for
permission, or find a similar program that can be freely ported.

Sometimes you just can't get in contact with the author, usually because he is no longer MUCK'ing. In this
case, contact the MUCK's MUF or Globals wizard, and let her know that you want to port the program.
Usually there is no problem with this. And, even if the program says it can be ported freely, sending page
#mail that you've done so is a good idea: people make programs freely available because they would like to
see them widely used; letting them know you are using their program is a thoughtful gesture.

Connect and Disconnect Calls: Programs called from these queues (and related queues such as _arrive
and _listen) must be set Link_OK. Again, when uploading from scripts, this is handled for you, but
when you're manually porting the program, you will need to set the calling property yourself.

> @set con-announce = L
 Flag set.
> @propset #0 = dbref:_connect/announce:#82
 Property set.
> ex #0 = _connect/announce
 ref _connect/announce:con-announce(#82FWLM3)

Sometimes a program needs to be called from a prop like _connect, _disconnect, or _listen —
and so should be set Link_OK — but also needs to be kept not Link_OK for security reasons. This is
handled by creating a small, Link_OK stub program that calls the real program. An example of this is
provided below, in the discussion of setting up Guest characters.

Macros: Programs uploaded from scripts or provided with the start-up database will set up any macros they
need. For programs that you install yourself, you will sometimes need to define macros. If a program that
works fine on another MUCK will not compile on yours because of an unrecoginized word...

 Error in line 273: Unrecognized word otell.

... the problem is probably an undefined macro. On the MUCK from which you are porting the program, go

into the program editor, type 's' to see a list of defined global macros, and look for the offending word...
'otell' in this example. Copy the macro definition. Then, on your MUCK, define the macro.

> @edit lib-look
 Entering editor.
 Line not available for display.
> def otell (s --) loc @ me @ rot notify_except
 Entry created.
> c
 Compiler done.
> q
 Editor exited.

MUF Macros are also discussed in Section 3.2.3, MUF Macros.

MPI Macros: You will probably want to set up global MPI macros as well. These are stored in the
_msgmacs/ directory of Room #0. Set a property in this directory, with the name of the macro as the prop
name, and the MPI to be used in its place as the stored value. For example, to set up a simple {look-
notify}...

> @set #0=_msgmacs/look-notify:{null:{tell:[{name:me} looked at
 you.],this}}
 Property set.

Wizards on an established MUCK may well be willing to email you a file containing their MUCK's MPI
macros. MPI macros are also discussed in Section 3.1.1.

You may also copy sample MUF macros and sample MPI macros from here.

Tuning System Parameters:

The @tune command lets you adjust a number of system parameters. Type '@tune' without arguments to
view the parameters and their current settings. Most can be left at their default settings. Of those that you
may want to change, some only make cosmetic or formatting changes, while others significantly affect the
operation of the MUCK. The following are some parameters you may want to change. The syntax for
resetting a parameter is '@tune <parameter> = <value>'. The value must be compatible with the
data type indicated in the left column of @tune output: (str), (bool), etc.

dumpwarn_mesg
dumpwarn_mesg
deltawarn_mesg
dumpdeltas_mes
g
dumping_mesg

These parameters can be freely changed to alternate save messages. Note, however,
that some players configure clients to be triggered by the ## characters in a save
message. So, it's a good idea to keep this format: enclose your new save messages in
double octothorpes ##

penny
pennies
cpenny
cpennies

Declaring new currency denominations is a time-honored wiz pastime.

muckname This you should change. Set it to the name of your MUCK. It's a good idea to use a

muckname setting that does not include any spaces.

huh_mesg
leave_mesg

You may want to supply something more imaginative for these.

 dump_interval Four hours is the default interval between saves. This is quite workable, though it's
often shorter on new MUCKs and longer on large, established ones.

max_pennies If money is signifcant on your MUCK, you may want to lower this. Note that M2

Muckers can make very simple programs that give pennies freely. (This will
eventually be changed in fb6.0+.)

 penny_rate Lower this if you want fewer 'You found a penny!' messages; raise it if you
want more.

command_burst_
size
commands_per_t
ime
command_time_m
sec
max_delta_objs
max_loaded_obj
s
max_process_li
mit
max_plyr_proce
sses
max_instr_coun
t
instr_slice
mpi_max_comman
ds
pause_min
free_frames_po
ol

It is unlikely that you will need to change these. However, if for some reason you
believe your server is performing poorly, you may wish to try adjusting these
system-performance parameters.

playermax_limi
t

The default limit is 64. Higher limits allow more players, but setting an
unreasonably high limit wastes memory.

listen_mlev This parameter controls the minimum Mucker level of programs which can be called

by _listen. The default is M3, which is a good choice. The decision whether to
raise or lower it should be based on how closely player programming is monitored.

 player_start This should be changed. Set it to the dbref of the room where you want new players
to start.

use_hostnames The default for this parameter is no, but tuning it to yes is convenient. Wizards
see connection information when typing 'WHO*' (use 'WHO' without the asterix
for normal formatting). With use_hostnames set to 'yes', domain names
rather than numeric IP addresses will be shown for all players logged on. Note: the
change won't be immediately apparent. Host names will be supplied for players who
log on after you tune the parameter to 'yes'; those who are logged on now will
still have numeric addresses.

log_commands
log_failed_com
mands
log_programs

Whether or not to log and what you do with the logs are fairly significant decisions.
See also Security Concerns and Privacy Issues. As for the technical aspects of
logging, note the following:

• All commands (including says and poses) entered by wizards are logged,
regardless of the logging parameters. If log_commands is off, and you
want to have a private discussion that won't go into the logs, set yourself
Quell.

• Log files pile up. You will need to follow some schedule for deleting old log
files. (The files are in the server directory game/logs.) Either by hand, or
with a script, or with a crontab script that runs automatically, follow a routine
for copying the current logs to storage files. For example:

 mv com2 com3
 mv com1 com2
 mv commands com1

Doing this once per day, say, will keep one-day- old log_commands files in
'com1', two-day-old logs in 'com2', three-day-old logs in 'com3'.
After three days, they're gone.

Raw logs are difficult to read. If you do need to review log files, mastering
the UNIX 'grep' command will be very helpful.

dbdump_warning
deltadump_warn
ing

Until your MUCK grows to past several thousand objects, full saves will take only a
couple seconds, and delta saves will be practically instantaneous. You might want to
turn these off, out of anti-spam sentiment.

 realms_control The Realms Wizard system has advantages and disad- vantages. See Using the
Realms Wizard System.

The remaining parameters can safely be left at their default settings. For a (terse) description of what each
parameter does, see the entry for SYSPARM in Section 3.2.5, MUF Reference.

Editing Server Files:

The screen shown at log in, and the information provided in 'info', 'news', 'help', 'man',
'mpi', and 'motd' (Message of the Day) are all stored in the server directory game/data.

One of your first tasks will be providing a new log in screen, to replace the TygressMUCK screen supplied

file:///home/riddochc/src/muckman/privacy

with the server. To do so, edit the file game/data/welcome.txt. Note: Though many players currently have
large screens, it's a good idea to limit the file to 78 characters by 20 rows. This is all that can be seen at one
time by someone running TinyFugue in 'visual' mode on a standard 80 x 24 monitor, or a similarly limited
terminal program on some other platform.

You can add to or edit the documentation provided in 'news', 'info', 'help', 'man', and 'mpi'
by editing the files 'news.txt', 'info.txt', 'help.txt', 'man.txt', and
'mpihelp.txt' respectively. Or, you can add files to the directories 'news', 'info', 'help',
'man', and 'mpihelp'. Adding a file called 'join' to the 'news' directory would create an entry
that players can read by typing 'news join'.

The MOTD will usually be updated online, with the 'motd' command (syntax: 'motd <message>' to
add an entry; 'motd clear' to clear all entries). The motd command gives no control over formatting,
however, and you can only clear all the entries, not one or some. If you want to make more precise changes
to the MOTD, edit the file game/data/motd.txt.

Setting Up Guest Characters:

(Note: Setup for the con-multiguest, the Guest program supplied in the fbmuf package, described
here, is more difficult than it really ought to be. As an alternative to the process described below, you may
want to make a copy of MultiGuest.muf, edit the line that specifies the guests password to something
unique, go to the room that the Guests will start at, and paste the file into your client window. This will set up
your Guest characters automatically. You need to have a $nothing action set up before quoting the file.)

You will probably want to allow Guest characters. A program that shuffles incoming connections to the next
available Guest character is available in fbmuf.tar and the start up database: con-multiguest. There is
also a small 'stub' program — con-callmultiguest — that calls the main program when players
connect as Guests. The reason for this is that programs called from _connect must be set Link_OK, but
the password creation scheme for Guests should be kept private, for security reasons. Rather than calling
con-multiguest directly (which would require it to be set Link_OK), con-callmultiguest is set
Link_OK and called on connection. Then, this small program calls con-multiguest itself.

If you don't have con-multiguest and con-callmultiguest ported and registered yet, do so now.
Then set both program Wizard. Set con-callmultiguest Link_OK and Set_UID.

> @prog con-multiguest
 Program created with number 88.
 Entering editor.
> i
 Entering insert mode.
 < quote or paste program >
> .
> c
 Compiler done.
> q
 Editor exited.

> @reg con-multi = con/multiguest

 Now registered as _reg/con/multiguest: con-multiguest(#88FM3) on
 Room Zero(#0R)

> @set #88 = W
 Flag set.

> @prog con-callmultiguest
 Program created with number 89.
 Entering editor.
> i
 Entering insert mode.
 < quote or paste program >
> .
> c
 Compiler done.
> q
 Editor exited.

> @set #89 = W
 Flag set.
> @set #89 = L
 Flag set.
> @set #89 = S
 Flag set.

If you haven't created a room for the Guests to start in, do that now as well.

> @dig Guest Room
 Guest Room created with number 90.

@Pcreate the proto-Guest character.

> @pcreate Guest = guest
 Player Guest created as object #91.

Then @pcreate the actual Guests. By default, the con-multiguest program is set up to handle eight
Guests. If you want more or less, find the following line in the program...

 $def NumGuests 9 (Max guests allowed connected + 1)

... and edit it appropriately. That is, change 9 to some other number.

> @pcreate Guest1 = guest
 Player Guest1 created as object #92.
 .
 .
 .
> @pcreate Guest8 = guest
 Player Guest1 created as object #99.

@Teleport the Guests to the Guest Room, and @link them there.

> @tel *guest = #90
 Teleported.
> @link *guest = #90
 Home set.
 <etc.>
 <etc.>
 <etc.>

@Set the _connect/multiguest property on each Guest to call con-callmultiguest.

> @propset *guest=dbref:_connect/multiguest:#89
 Property set.
> @propset *guest1=dbref:_connect/multiguest:#89
 Property set.
 <etc.>
 <etc.>
 <etc.>

This version of the multi-guest program changes Guest passwords by forcing a wizard (not the most elegant
approach). You'll need to edit line 14 of the program, designating a wizard to do the forcing. In the original
file, #1 is designated, but God cannot be forced if the MUCK is compiled with GOD_PRIV. (If you don't have
other wiz characters yet, you need to make one.)

You should probably also change the password creation scheme. This is in line 20. It's not really crucial what
you change it too: just make it something that returns a string.

> @edit con-multiguest
 Entering editor.
 Line not available for display.
> 14 l
 $def Wizard #1 (Change this to a wizard's dbref. Preferably not #1)
> 14 d
 1 lines deleted.
> 14 i
 Entering insert mode.
> $def Wizard #2 (Change this to a wizard's dbref. Preferably not #1)
> .

> 20 l
 $def PassWdMake (i -- s) 3 + 9 * intostr "TimE" swap strcat "tWINe"
strcat
> 20 d
 1 lines deleted.
> 20 i
 Entering insert mode.
> $def PassWdMake (i -- s) "snerk" 5 * 7 intostr swap strcat "aVast"
strcat
> .
> c

 Compiler done.
 Editor exited.

Creating a 'Gohome' Exit:

A 'gohome' action that will let players return to their homes without losing things they're carrying is a
worthwhile and easy-to-install convenience.

> @act gohome = #0
 Action created with number #100 and attached.
> @link gohome = home
 Linked to HOME.

Using the Realms Wizard System:

Realms Wizards are players who have extended control over objects within a certain area of the MUCK...
that is, in rooms parented to a common environment room. There are advantages and disadvantages to the
realms wizards system, discussed below. Whether you are going to use the system is not something you must
decide immediately, but if you are going to use realms wizards, there a few advantages to doing so from the
outset.

In order to use the realms wizards system, the system parameter realms_control must be tuned to
'yes'. The effect is to give the owners of rooms set Wizard extended control over objects in that room,
and over objects in rooms parented to that room. A realm wizard can examine, set properties on, and link
objects within his realm as though he owns them. He cannot chown objects belonging to others, unless the
objects are set Chown_OK, and he can only force objects that are set xForcible and force locked to him,
but since he can � @force_lock and set flags on objects in the realm he can essentially chown and �

force anything in the realm as well. He can @teleport anywhere within the realm, just as a wizard can.

There are decided advantages to making your staff builders realms wizards. The extended control is a
genuine help as they construct the area, and their realm wizard status may well be a motivating factor: they
are lord in their realms, but that will only be meaningful if people use the areas, so they have good reason to
make the areas as well constructed and attractive as possible. Once the area is built, they will be able to help
players with matters such as linking homes. Also, making staff builders realms wizards rather than wizards
avoids the problem of having several surplus wizards once the world is constructed.

The one significant disadvantage — or at least consideration — is security. Wizards have virtually unlimited
control over the database, but they also have built-in accountability: all wizard commands are logged,
regardless of whether log_commands is tuned to 'yes' or 'no'. Within their realms, realms wizards have
comparable control, but their commands are not automatically logged. A clever and malicious realms wizard
could set locks and flags on a true wizard who enters his area, and use these to directly or indirectly force the
true wizard to do something destructive or harmful elsewhere. If (im)properly handled, the properties could
erase themselves once they have done their job, leaving no evidence, and the logs would show the true
wizard as the guilty party. The only real safeguard is the same safeguard provided against true wizards:
accountability. If you want to use the realms wizard system, turn on command logging.

The realms wizard system works best if you set up a consistent, geographically structured environment tree.
This is much easier if done when the MUCK is new. The following schematic shows how a science fiction

MUCK might be set up to use realms wizards. Rooms 'Starport Env. Room' and 'Earth Env.
Room' would be chowned to staff builders, and set Wizard. These players who own these two rooms
would then have primary responsibility for and control over those two areas. Additional areas could be
parented to IC Environment Room, and the two realms control rooms could also include environment
rooms, perhaps with other players holding realms wizard control over those smaller areas.

 Room #0
 |
 Main Environment Room
 | |
 IC Environment Room OOC Environment Room
 | | |
 Starport Env. Room Earth Env. Room |_ Guest Room
 | | |_ Player Start
 |_ Some room |_ Some room |_ Staff Offices
 |_ Some room |_ Some room |_ Help Room
 |_ Some room |_ Some room |_ MUF Vault
 |_ etc. |_ etc.

5.1.4 Security Concerns
Security problems are, fortunately, rather rare on MUCKs. Most MUCKs function — quite successfully — in
a climate of trust, but giving thought to security issues is one of your responsibilities as an administrator. The
issues are magnified if you become an administrator on a large MUCK, or if your MUCK attracts a sizeable
player base.

In this section, 'security' is meant as 'protection against unauthorized modification or destruction of the
database itself, or of database objects'. This is somewhat different than the related issue of privacy. Privacy
issues are discussed in Section 5.2.4.

Access to the MUCK Account:

Being able to log onto the server account the MUCK is run from is the trump card of all security concerns.
With access to this account, someone bent on mischief or destruction can do anything: change God's
password, alter logs, or destroy the database and all backups. Someone bent on safeguarding the MUCK can
undo any damage: no matter what has gone wrong or been destroyed on the MUCK, the world can be restored
to sane and healthy condition by restoring from back ups.

So, control over and awareness of who has access to this account is the foremost security concern. If you own
the machine the MUCK runs on, and are able and willing to do all site administration tasks, the issue is
considerably simplified: don't give anyone else the password to the account.

For most MUCKs, the situation is a bit more murky. Often someone else owns the machine. Sometimes the
site administrator is a wizard on the MUCK, but only marginally involved in its day-to-day affairs.
Sometimes several staff members end up having access to the account: God has access because it is, after all,
her world; the site admin has access because it is, after all, his computer; the player relations and security wiz
ends up getting access so he can review logs in situations where one player has charged another with some
kind of offense; the wiz responsible for creating new characters gets access so she can check email for char

requests; perhaps another wizard is given access so he can update news, info, and help files. (For some
things, you can enlist server-side help from staff members without giving them access to the account. For
example, a separate account could be set up for the security wiz, and you could copy the log back ups to a
directory in that account, rather than game/logs. A separate account can be set up for the wizard who
does character creation, with char requests to be mailed there, or mail can be forwarded to her.)

If this is a team of trustworthy people, then things are grand. Work is shared among several people, and any
one of them could log on to deal with an emergency, such as restarting the MUCK after a power failure. But,
be aware: if you share access to the MUCK account, you no longer have total assurance that the MUCK is
safeguarded. It is conceivable that one of these people will get mad at you, or at life, the universe, and
everything, and destroy the MUCK, or that one will give the account password to someone you don't know.

Keeping Backups

The server does a certain measure of backup on its own. At restart (assuming you are using the standard
database filenames) the database used at the previous restart, std-db.db, is copied to std-db.old,
and the most current form of the database (std-db.new, created from the most recent dump) is copied to
std-db.db. So, at any given moment, you have three versions of the database on hand.

You may want to take this a step further. Copying the most recent database file to another file and
compressing it gives you a safe copy. Depending on your energy level and disk space, you may want to do a
rotating swap of database back ups similar to the one suggested for logs.

 mv backup2.gz backup3.gz
 mv backup1.gz backup2.gz
 cp std-db.new backup1
 gzip -9 backup1

The reason for keeping older backups is that it's possible for a database to become corrupt during normal
operation: some bug in the server or on-line programs creates inconsistencies in the database file. In this
situation, the most recent backup file is not necessarily the best one: it too could be affected.

Also, to safeguard against hardware or access problems, you may want to do an offsite back up. With File
Transfer Protocol, this is a simple (but potentially time-consuming) process. FTP your most recent backup to
some other host. If your server goes down, or one of your wizards goes bonkers and deletes the backups, you
can set up on an alternate site.

Access to #1:

Next in the hierarchy of security issues is access to the God character. If the MUCK is compiled with God
privileges, only God can set players W or !W, or change wizards' passwords. Also, only God can use the
utilities for analyzing and repairing the database, @sanity and @sanfix.

On most established MUCKs, God is not used as an actual player. The primary wizard of the MUCK will
create a wizard character for daily use, and only log onto #1 to only set or unset players' wizbits or to use the
database utilities. In part this is for security: just as UNIX sysadmins do their normal work from an account
other than root, MUCK Gods do their normal work from a different character. In part it is simply a
convenience: wizards sometimes need to force themselves, or use programs that force them, and #1 can't be
forced. Also, #1 always gets the full-data WHO screen (which wizards see when typing WHO*), whether she
wants it or not. And in part it's a matter of facilitating administration of the MUCK. Sometimes the de facto

God of the MUCK (the overall administrator who appoints wizards, determines policy, etc.) and the most
technically accomplished staff member (the person who would handle matters such as running @sanfix)
are two different people, so both have reason for using #1. Or — a rather common situation — there is no
single wizard with total control; rather, leadership is shared among a core group of wizards, each having
access to the God character.

Whatever set up you use, the password to #1 is an important piece of information, and should only be given
out on a need-to-know basis.

Wizards:

Most wizards are committed to their worlds, and would never directly harm it, but the possibility exists. It's
not unheard of for an immature wizard to get angry and destroy a world. The MUCK can recover from this by
restoring from back ups, but obviously this is an unpleasant chore.

More common problems come about inadvertently. Most are minor: a wizard with wayward fingers mistypes
#321 for #312, and recycles some important room or command. So, you fix it.

Sometimes players @force lock themselves to each other. Wizards shouldn't. When you appoint a new
wizard, check his force lock. When he was a player, it was fine for his roommate to be able to force his
sleeping body downstairs when she had visitors, but it's not fine for her to be able to force him once he is a
wizard.

Wizards should also be aware of a specific line of attack that can be used to modify objects with the wizard's
permissions. You can set properties on objects you control (you control everything). Also, objects you
control can set properties on other objects you control (and you control everything). And, properties can
include MPI that causes programs or other properties to execute. (This is true for players too, but the
implications are less threatening.) For wizards, these events are carried out with wizard permissions. In short,
and without providing specific recipes, a naughty player can make objects which — if they are owned by a
wizard — can do naughty things. Whenever you @chown an object, examine its properties, with particular
attention to MPI that stores values or calls properties or programs ({store}, {exec}, {lexec},
{muf}, and the like).

Programs:

Wizard programs can do pretty much anything a wizard can do, and M3 programs are quite powerful as well.
As with security issues regarding wizards, the trick is to identify and support trustworty people (and
programs), and to be aware of the issues, rather than trying to anticipate and safeguard against every possible
threat.

Your best defense against security breaches through programs is to appoint a good MUF wizard. This staff
member determines who gets Mucker bits, with special attention to M3's, and reviews global and public
programs, with special attention to programs that players ask to port from elsewhere. If you are not
particularly MUF savvy, or if you are a good coder but lack the sneaky mindset necessary to be a good hacker
or anti-hacker, you should recruit someone with these qualities. (Surprisingly, it is possible to find honest
sneaky people.)

Some general points...

The apparent purpose of a program is no guarantee of its potential threat or lack thereof. If someone asks you
to port a 2000-line Poker program that needs to be set Wizard so it can keep scores in a protected .scores/

directory, approach it as a wizbitted program large enough to hide some Trojan horse feature, and not as 'just
a card game'.

*

Programs set Link_OK are public: they can be listed, linked to, and called by other programs. Many are a
little too trusting: they assume that you (the person using the program) are who you're supposed to be. And, if
you use them in the normal way, you are. But it is a trival matter to concoct a small stub program that stores
an incorrect dbref in the 'me' variable, puts an argument string on the stack, and then calls a public
program. An M2 morphing program may seem perfectly safe — after all, people won't put harmful things in
their own descs — but consider: JoeHacker(#666PBJM2) might be able to store #1 or the dbref of some
other wizard in 'me', put a string holding naughty MPI onto the stack, and then call the morph program,
creating a situation where the next time someone looks at the wizard, untoward things will happen.

Fortunately, there is a rather simple way to plug this hole. Check all Link_OK programs; if they don't guard
against such assualts, edit them, adding a line that does so. Before the first line of the last function in the
program, insert the following line:

 "me" match me !

This explicitly matches the dbref of the triggering player or puppet, and stores it in the 'me' variable.

*

In general, any program should be run with with the lowest permissions level that will work. If a program
will run at M2, set it M2, not M3 or W. If a program doesn't need to be owned by a wizard, consider
chowning it to some mortal, possibly an NPC you use for just this purpose.

*

You owe it to yourself and your players to make your policies on security and privacy concerns as they
pertain to programming explicit. Providing a document stating this policy, readable through the 'news' or
'info' command, is a very good idea. A sample policy is provided in Appendix B. The sample policy may
be freely copied and edited to meet your MUCK's needs.

5.2 Nontechnical Issues
The following discussions of nontechnical issues are necessarily subjective and editorial. They should be
read with a critical eye, but not ignored: new MUCKs succeed or fail for nontechnical reasons, not technical
ones.

5.2.1 Conceptualizing the World
The historical bias of MUCK toward socializing presents the would-be administrators of a new world with a
special challenge. On platforms such as MUSH, with its emphasis on role playing, creating a successful new
world is not intrinsically difficult: one develops a well-written geography and sound command structure,
plants TP seeds with timelines and background events, advertises the MUSH, and the world has a good
chance to survive. If it's well done, and if it taps into a new or popular genre, it should attract players. But,

MUCKs tend to be primarily places to socialize rather than RP. There is no technical reason why MUCK is not
as good as or better than MUSH for RP, but the trend is there. So long as players' motivation for MUCKing is
socializing, established worlds will have a powerful advantage over new worlds in attracting players: if one
goes to MUCKs in order to meet and be with people, it makes good sense to go to a world where there are 300
people online rather than a struggling new place where there are three. Unless the new world offers
something that established worlds do not, the administrators will, after a great deal of time and effort, find
themselves lords of a very lonely domain.

Dealing with this problem is beyond the scope of this manual, but it is mentioned and even stressed here
because it is very easy for new administrators to lose sight of. Their new world seems grand to them — at
least in part — because now they are wizards, now they are in charge. It's a grand new world because, in
short, it is their world. But if players are to make it their world as well, the administrators will need to give
thought to a fundamental question: Why should anyone come here?

Does the MUCK put a new genre online? Are there intriguing adventures or quests, or well-wrought gaming
programs? Does it appeal to some audience beyond that of current MUCKs? Are players brought together by
a common and heretofore unserved interest? The answer to at least one of these questions needs to be 'yes'.

5.2.2 Recruiting a Staff
Recruiting and keeping a good staff of wizards can be surprisingly difficult. The best wizards already are
wizards somewhere, and have little incentive to take on another world and stick with it through the long haul.

Putting and keeping a MUCK online requires the sustained efforts of several people. At least one person on the
staff should have solid technical skills, and all staff members should have a thorough understanding of the
difference between a #dbref and a hole in the ground. But it is not necessary nor even advisable to recruit
wizzes exclusively from a pool of technical hot-shots. Technical expertise is one (and only one) of several
skills required among staff members. Interpersonal, organizational, and writing skills are important as well.
A strong staff will have a balance of these skills among them, plus time, energy, and commitment.

Time, energy, and commitment are in fact the most scarce and valuable of VR resources. And, wizards who
become inactive after a first flush of enthusiasm are the most common management problem. There are no
magic bullets for these problems, just hard-to-follow advice:

• Try first to find the ideal candidates for wiz positions. There are two flavors:
• Good, active wizards who would like to move on from a world where there is friction among

staff, or their area of responsibility is limited.
• Good, energetic players who demonstrate maturity and skill in one of the areas a new MUCK

needs. Helpstaffers on large MUCKs are a good pool: these are people with a demonstrated
willingness to spend their online time making things work.

• Recruit friends if you want, but don't do so on the basis of friendship. Recruit friends who have
something to offer, and know from the outset that one day you may need to ask your friend to resign,
or be stuck with an inactive wizard.

• Be willing to perform the unpleasant task of firing wizards who don't work out.

5.2.3 Sharing Responsibility
Most MUCK administrators find it necessary or at least helpful to recruit a staff, to share responsibilities for
building, programming, technical maintenance, player relations, and so forth, with a team of people with
aptitude for a specific area of responsibility.

Use whatever pigeon holes and job desciptions you like. The following are common:

• Site Administration: This wizard is responsible for maintaining Net access. Sometimes the site admin
is only marginally involved in the MUCK's day-to-day affairs, acting essentially as a landlord. Even
in this situation, there are reasons for making the site admin a wizard: for example, he can log onto
the MUCK and do a clean @shutdown if it's necessary to shutdown the server for maintenance or
other RL reasons. The site admin may also be responsible for server-side chores such as keeping
back-ups, updating news and info files, and answering email addressed to the MUCK staff.

• Programming: This wizard sets and unsets Mucker bits, based on players' programming expertise,
trustworthiness, and committment to the world. She also reviews programs to be ported, checking
security and efficiency considerations. She may also be responsible for creating and maintaining a
listing of publically available programs.

• Player Relations: This wizard arbitrates grievances between players and charges of AUP violations.
He is empowered to act as appropriate in such situations, using disciplinary tools such as recording
warnings and charges in a log kept on the character, temporary @newpasswording, @toading,
and site banning.

• New Characters: This wizard @pcreates new characters. She needs a way to read emailed
character requests, and she needs information about any players, sites, and addresses that have been
the source of player-relations problems. For a small staff, it makes sense to combine this job and that
of Player Relations.

• Building: This wizard is, in the MUCK's early days, charged with building the world, or coordinating
the efforts of a team of builders. Once the world is built, the Building wizard will have the most
complete understanding of how everything is set up, and is the best person to decide matters such as
planning or incorporating new areas. Often, the Building wizard also determines policy on quota
issues.

The exact form of your organizational set up isn't crucial, but it is important that the staff has a good
understanding of who's responsible for what, when it's OK to do something that affects another staffer's area,
and that God or the core administrators keep a sense of proportion. Silly, unproductive 'turf wars' are a
common reason for staffs failing to gel as a team, and worlds burdened with squabbling wizards seldom
thrive. Some guidelines...

• God should refrain from micromanagement. If you've given a wizard authority to handle Player
Relations, let him handle it.

• Good communication solves most problems before they become problems. Set up a global page alias
for wizards and staff. All staff should page mail each other when they do something that affects the
MUCK as a whole, or affects others' areas of responsibility.

• If instant action isn't required (and it seldom is) let the wizard who's responsible for an area handle
that area. The Builder wizard may think that JoeHacker's actions obviously call for toading, and she
may be right, but it's better for her to simply @newpassword JoeHacker, and let the Player

Relations wiz handle the actual toading. Not only is it his job, but he may have worked out a
procedure for @chowning the character's objects, notifying the player, and so forth.

• And the flipside of the same coin... If you and the players frequently find that something needed just
doesn't get done because a key wizard is unavailable (the Programming wiz hasn't logged in in three
weeks, say), then something is amiss with staff organization. God should step in, handle the
immediate situation, and consider making changes to the staff roster.

5.2.4 Privacy Issues
Privacy on MUCKs is a charged issue, and making good decisions about how to handle privacy issues
requires making mature judgments in the face of seemingly contradictory considerations.

On the one hand, there is no guarentee of privacy in an online environment. On the other hand, there is no
excuse for administrators who abuse their position to pry into the online lives of players on their worlds.

On the one hand, the subjective experience of VR as a 'safe' environment often leads people to let down their
emotional guard... to reveal intimate or painful details of their lives to others online. Administrators should
take every precaution against violating the implied trusts that lead these players to make such revelations. On
the other hand, people have organized illegal activities online, and the administrators of worlds where this
has taken place have been embroiled in legal issues as a result. Administrators owe it to themselves and to
other players on the MUCK to take reasonable precautions against such cases.

Doing a good job with privacy issues is primarily a matter of following an important list of DON'Ts:

• DON'T read log files unless you have a specific, valid reason for doing to. Filter the output so you
only read what you need to read.

• DON'T set yourself Dark and move about the MUCK to populated areas, eavesdropping on
conversations.

• DON'T use Darked puppets to eavesdrop on rooms that you would otherwise not be able to hear.

• DON'T @teleport into private rooms without warning.

• DON'T @teleport online players without warning them.

• DON'T examine players' properties unless you have a specific, valid reason for doing so.

Religiously abiding by these "don'ts" in conjunction with keeping a log of commands issued by players is a
reasonable compromise. Be aware that if you do log commands, and players on your world are investigated
for illegal online activities (which includes using online worlds to organize illegal RL activities), your
command logs may be subpoenaed. It is not absolutely necessary for your AUP to state that you log
commands, but you will be on firmer ground if you do so: players will not be able to claim that they did not
know that commands were logged, and would have acted differently if they had known.

Your MUCK should almost certainly have an Acceptable Use Policy, an explicit statement of what constitutes
acceptable online activity for the MUCK and — more importantly — what does not. The policy serves two
purposes:

• It provides an objective basis for resolving disputes.
• It provides some measure of protection should players engage in illegal activities online.

Resolving online disuputes well requires judgment, maturity, and a certain degree of empathy... none of
which are really 'objective' factors. But the more you can found your judgment in objective, verifiable
factors, the less you will open yourself to charges of playing favorites, or being a hothead, or letting yourself
be swayed by personalities. Any of these can contribute to an unhealthy online environment, so do what you
can to put objective factors into place. The Acceptable Use Policy is a primary tool for this.

Copyright and privacy laws as they relate to the Internet are complex and rapidly evolving fields. The authors
of The MUCK Manual make no claim to expertise in this area. That being said, a general premise stands: if
you have put in place a policy stating the site's position on copyright, privacy, and related issues, and have
put in place mechanisms to make players aware of the policy and a way for them to indicate their agreement
to abide by the policy, it will be much easier for you to show that responsibility for any illegal acivity that
occurs on your site rests with an offending individual rather than you, the site administrator.

A sample Acceptable Use Policy, which may be freely ammended to fit the needs of your MUCK, is provided
in Appendix B. You may also wish to install cmd-aup, a program that lets players indicate explicit agreement
with the MUCK's Acceptable Use Policy, and provides a way to lock exits such that only players who have
done so may use them.

5.2.6 Toading
The command for getting rid of players is @toad. The syntax is:

 @toad <player1> [= <player2>]

This turns the Player object for player1 into an object of type Thing, and transfers ownership of all objects
owned by player1 to player2. If player2 is not supplied, all objects owned by player1 will be
@chowned to the wizard issuing the @toad command.

The Thing object will retain all properties that were set on the player.

Occassionally you will need to toad players: sometimes for particularly grave violations of the AUP, more
often because the player wants to leave the world or has simply stopped showing up and you want to reclaim
unused dbase space.

Some considerations:

As discussed in Section 5.1.4, Security Concerns , Wizards should examine the properties of objects they
@chown. If you are @toading a large number of players, or @toading a player with a large number of
objects, it's a very good idea to supply a non-wiz player for objects to be @chowned to when @toading
(perhaps an NPC player object used just for this purpose). This is of course espcially important if the player is
being @toaded as a disciplinary measure for security violations.

If you are @toading idle players to reclaim database space, you will probably want to @recycle objects
they own as well. It is advisable to proceed cautiously here. The player may have created rooms, actions, or
things that are in public use. So, examine objects as you proceed. It will be much easier to keep track of
which objects should be checked and potentially recycled if — again — you use a dedicated NPC character to
@chown objects too when @toading. If you are consistent about supplying this character as the second

file:///home/riddochc/src/muckman/cmd-#aup

argument to the @toad command, you can periodically review objects owned by this player (@owned
<player name>), and @recycle private objects previously owned by @toaded players.

Players often ask to be @toaded when something online upsets them. And, such players often change their
minds. And, such players aren't likely to be in a receptive frame of mind if you grill them about whether they
really want to leave. So... You can make your life and theirs easier if you institute a "silent grace period"
policy. When players ask to be @toaded, just say "OK", and let them leave with a minimum of fuss. But,
instead of actually @toading them at that point, give them a new password and new name, and move them
to a holding area. This way, if they change their minds, they can come back easily... all you will need to do is
rename and repassword the character object. And, you can take care of the database-related details of
@toading at your leisure. Periodically, you can review characters in the holding area, and do an actual
@toad on those who have been gone for an appreciable period.

Fixing a mistake:

It is not all that hard to accidently @toad someone. If you do, you can recreate the character exactly as it
was, except for one thing: You'll have to give it a new password. Hopefully, you have access to the player's
email address (see Record Keeping), in which case, you can simply recreate the character and send email
letting the player know what happened and telling him or her the new password. If you don't have their email
address, recreate the character and wait for a grumpy Guest to show up, demanding to know what happened
to his or her character.

To recreate an accidentally slain character, copy all properties from the slimy toad object to a temporary
holding object (so that you can reapply them to the new character), then recycle the slimy toad object and
immediately @pcreate a new character with the same name (so that the new player will have the same
dbref, which might be used in props and programs). Then, copy the properties back from the holding object
to the new character.

The 'cp' and 'mv' commands are the easiest way to shift the properties around, but, be aware that they
will not move wizard or restricted properties unless the program is set Wizard... And, be aware that if you
are using the 'stock' version of cmd-mv-cp, you should not leave it set Wizard: doing so creates a
significant security hole. Two options: You can temporarily set cmd-mv-cp Wizard, make your changes,
and then set cmd-mv-cp not-Wizard, or... you can install a modified version of cmd-mv-cp (available
here) that can safely be left at a Wizard setting.

5.2.7 Record Keeping
Your MUCK is itself a large, complex set of records, and most information you would need to record is
automatically recorded, either in log files or the database itself. There is, though, one record that most
administrators find extremely useful that MUCK itself has no mechanism for: player's email addresses. Life
will be much easier if you religiously follow a practice of recording email addresses each time you run
@pcreate. This will let you notify players of things like downtime and address changes, and — if you
follow a policy of not accepting character requests from anonymous email sites such as Hotmail, Rocketmail,
Yahoo, etc. — gives you some chance of identifying alternate characters controlled by the same player.

You can store this online (on the player object, in a property such as @/email), but it is more valuable to
keep the record offline, so that you can access it if the MUCK goes down... which is a prime example of when

file:///home/riddochc/src/muckman/cmd-mv-#cp

you would need the players' email addresses. A flat text file works fine for this.

One other kind of record keeping may prove useful. It is occasionally necessary to issue warnings to players
about AUP infringements, and the like. In order for such warnings to be a useful administrative measure,
other wizards need to know about warnings you have issued. A common and workable practice is to use a
program that stores administrative notes about such matters in a wizard-only propdir on player objects. With
it, you can see if any other wizards have noted AUP problems with a player before you decide what an
appropriate response to an incident is. (An example of such a program is provided here.)

5.2.8 The Last Word
Throughout, The MUCK Manual has discussed the numerous technical effects of the Wizard bit being set
on a player. But wizbits often have another, nontechnical effect: they can greatly aggravate any tendency the
player has toward arrogance and pomposity. Do your players a favor... Do yourself a favor: guard constantly
against thinking that being a wizard makes you special. The best MUCK wizards treat the job as "glorified
janitor", with the emphasis on "janitor".

Clients
A M* client is a program running on your computer that, like telnet, can connect to M* servers, but — unlike
telnet — has numerous features intended for use with M*'s. Some clients, naturally, are more full featured
than others. Common features include macro capability, logging, automated logon, hiliting, multi-worlds,
and recall. Below is a list of a few popular clients... try one of these to get started.

AmiMUD
An Amiga client.

MacMUSH
A Macintosh client.

MUDCaller
A DOS Client.

MudRunner
A DOS client.

MUDSOCK
A Windows 3.1 and Win32 client.

MUSHClient
A Win32 client.

Phoca
A Win32 client.

Pueblo
A Win32 client with multimedia and hypertext capabilities.

http://www.chaco.com/pueblo/
http://24.0.190.197/phoca/#phoca
http://www.gammon.com.au/mushclient/mushclient.htm
http://www.tc.umn.edu/nlhome/m279/fayxx001/mudsock/
ftp://ftp.ccs.neu.edu/pub/mud/clients/mudrun/
ftp://ftp.avalon-rpg.com/avalon/MUDCALL/
http://tales.ccs.yorku.ca/mush/connect/#macmush
http://www.geocities.com/CapeCanaveral/Lab/6449/#amimud

Rapscallion
A Mactintosh client.

SimpleMU
A Win32 client. (Recommended)

TinyFugue
The definitive UNIX M* client. Ports to OS/2, Windows, MacOS, VAX/VMS, and BeOS are also
available here. (Recommended)

WyrmNet
A console-based Win32 client.

zMUD
A Windows 3.1 and Win32 client.

Appendix B: Sample Policy Files
You may freely modify and use these on any MUCK

The @AUP command mentioned in the Acceptable Use Policy can be copied from here. This command sets
the restricted property ~aup to "yes". You may wish to @lock important commands and exits (such as the
exit leading out of the player_start room to this property, to ensure that players are apprised of the
AUP's existence and are (more or less) forced to enter an explicit command indicating their agreement, or
stop using the MUCK.

> @lock out = ~aup:yes
> @fail out = Before entering GenericMUCK, you must first read the
Acceptable
 Use Policy (type 'info aup'), and indicate that you agree to abide by
its
 terms (by typing '@aup').

 GenericMUCK's Acceptable Use Policy

The staff of GenericMUCK respects your privacy and intellectual
property rights, and requires that you extend the same respect to others.
Please read this file completely, and enter the command @AUP to
acknowledge that you have read the file and agree to abide by its terms.

'Residents' refers to all players and staff. Where the distinction
between staff and players is important, this will be explicitly noted.

1.0 Access and Legal Responsibility

Access to GenericMUCK, and the computing resources required to operate
GenericMUCK, is granted on a revokable basis, and at no time is this
access guaranteed.

GenericMUCK services may be used only for lawful purposes. Transmission
or solicitation for reception of material which violates US Federal or
Hawaii State Law, any Policy of the site where the MUCK operates, or
state or local law of the area in which you reside is prohibited. This
includes, but is not limited to, material that is threatening, libelous,

file:///home/riddochc/src/muckman/cmd-#aup
http://zuggsoft.com/zuggsoft/index.asp
http://www.wyrm.demon.co.uk/wyrmnet.htm
http://laurel.actlab.utexas.edu/~hawkeye/tf/
http://simplemu.onlineroleplay.com/
http://www.rapscallion.co.uk/

or violates trade-secret, patent, or copy-right protections.

You agree to indemnify and hold harmless GenericMUCK, its staff, the
owners/operators of the computing resources, and all other parties
connected with the administration of GenericMUCK from all claims which
are a result of your usage, without limitation. You agree that any
traffic which originates from your character or connection is your legal
responsibility.

Notwithstanding the above, you agree that should GenericMUCK or its staff
be found liable in a court of law for any action or lack of action related
to your use of GenericMUCK, our liability is limited to $0.00.

2.0 Privacy

As a resident of GenericMUCK, you have a right to reasonable privacy.

2.1 Residents may not use programs, zombie objects, or other methods to
monitor your conversations or activities inappropriately.

 2.1.1 Residents may use zombies, broadcasting exits, programs, etc.,
 as detailed in 'news programming'.

 2.1.2 Staff may monitor intrusively, by setting the Dark flag on
 themselves or referring to logs, if they have reason to believe that a
 player or group of players is actively conspiring to destroy or damage
 the MUCK's database, or is engaged in illegal activities.

 2.1.3 Electronic Communications Privacy Act (ECPA) NOTICE: The staff
 of GenericMUCK reserves the right to monitor any and all communications
 through or with GenericMUCK computing facilities. You agree that
 GenericMUCK facilities are NOT to be considered a secure communications
 medium for the purposes of the ECPA.

2.2 Residents may not use programs or other methods to retrieve
information stored in properties on your character or belongings
inappropriately.

 2.2.1 Residents may create and use programs that retrieve information
 in ways that meet the the guidelines detailed in 'news programming'.

 2.2.2 Staff may use the 'examine' command and other methods of
 retrieving information remotely as needed.

2.3 Residents may not harrass you.

 2.3.1 If you indicate that you are not receptive to intimate or
 sexual contact with another resident, that resident is obligated to
 respect your wishes. If someone persists in making unwanted advances,
 repeat your demand that he or she stop, and page a staff member
 immediately.

 Residents guilty of sexual harrassment are liable to disciplinary
 action up to and including @toading and site-banning.

 2.3.2 Repeated attempts to talk to, page, or otherwise interact with
 a resident who has clearly requested to be left alone are a violation
 of Acceptable Use.

 2.3.3 Racial, ethnic, and religious slurs directed at a player are a
 violation of Acceptable Use.

2.4 Information about your life outside GenericMUCK is privileged. Your

RL name, gender, age, phone number, email address, and place of residence
are priviledged information. That is, unless you explicitly indicate that
this information may be dispersed, residents are obligated to treat the
information as confidential.

2.5 Privacy as regards alternate characters is left to residents'
discretion.

 2.5.1 You may have alternate characters, and you are not obliged to
 inform others of the relationships between your characters.

 2.5.2 If you do not wish others to know of the relationships between
 your characters, do not give out this information. If you do not mind
 other residents knowing about the relationships between your characters,
 it would be helpful if you indicated this, by conversation, pinfo, or
 other means.

3.0 Intellectual Property Rights

The staff of GenericMUCK honors intellectual property rights as they
pertain to the MUCK, and requires that residents do so as well. The staff
claims no particular expertise in the complex and evolving field of
international copyright law and the Internet. This does not, however,
invalidate or limit the AUP as it pertains to intellectual property
rights: GenericMUCK policies on intellectual property rights stand
as detailed below.

3.1 Residents may not create programs, rooms, or other objects
incorporating copyrighted material without verifiable permission from
the copyright holder.

3.2 The staff of GenericMUCK become joint holders of intellectual
property rights for public rooms or other creations which become an
integral part of GenericMUCK and are used by a substantial portion of
the residents. The owners of such creations may improve and add to them
as they see fit, but may not @recycle the object or remove the properties
or code that make it integral to the MUCK without permission from the staff.

In the event that a player inappropriately destroys or changes public
creations, the staff reserves the right to restore such creations from back
ups. Should such occassions arise, intellectual property rights for that
creation as the pertain to the MUCK will from that point lie solely with
the staff of GenericMUCK. That is, the creating player forfeits rights to
determine if and how the creation is used on the MUCK.

3.3 Programs which include notices that permission to port is requested
or required may not be ported to or from GenericMUCK without such
permission. If you wish to port such a program and are unable to contact
the author, notify a staff member. The staff will attempt to contact the
author, and if unable to do so, will determine ona case-by-case basis
whether the port meets AUP requirements.

3.4 The staff will not modify or remove any of your programs without
your permission, with the following exceptions: in the case of programs
which pose a threat to the integrity of the database or violate privacy
as detailed in 'news programming' and the AUP, the staff will either
request that you modify or remove the program, or will do so themselves.

4.0 Violations of Acceptable Use.

Residents who violate the Acceptable Use Policy, or who commit acts not
explicitly covered by this policy but deemed a vilotation of the policy's
spirit by the staff, are liable to consequences including:

 - Suspension of access to the Muck and its computing resources for
 a time to be determined by the administrators.
 - Removal of your character and termination of access to the Muck
 and its computing resources without prior notice.
 - Notification of your site and/or system administrators
 - Notification of civil and/or law enforcement authorities.

 GenericMUCK's Mucker Policy

1.0 How can I be a Mucker?

We welcome both experienced and neophyte Muckers. We ask only that (a)
you help the general public, not just yourself, by writing useful programs
of some social benefit or aid to building, and (b) that you abide by the
spirit and letter of our Mucker policy.

If a program you would like to write or use falls into a "gray area" of
these guidelines, please ask us for clarification. We may be able to
suggest ways to accomodate your needs.

2.0 What does a Mucker do?

 2.1 Learning to Program

 Start by reading the MUF tutorial and the MUCK Manual, also the
 CHANGES files. Find them with the INFO command. If you need more help
 than this, we may be able to put you in touch with a Mucker willing
 to tutor you. If you write small programs to test something, or no
 longer need a program, please remember to clean up after yourself.
 A clean database is an effcient database, with less lag.

 2.3 Public Programming

 Whenever you write a program, and especially when a program is publicly
 accessible (Link_OK), please make sure it adheres to our guidelines:

 1. It should be useful in some way, social or building.
 2. It should not violate guidelines of privacy, respect, or
 honesty. (see section 3.0 of this policy)
 3. It should not be wasteful-- do not use more space or CPU time
 than is reasonable, or duplicate things that already exist.

 If one of your programs meets the guidelines above, you may ask to have
 it made publicly available. Such a program must be set link_ok in order
 for other people to use it. A program that would be useful as a command
 for everyone may be installed as a global. Type 'globals' to see some
 commands available.

 Many programs are already publicly available; type 'programs' for a
 list, then list these programs for more information, or go to the
 Programming Room off the Administrative Nexus and look through the
 files. If you are looking for a program that would be a modification
 of an existing one, you might find it more convenient to ask the
 programmer to change it appropiately.

3.0 Guidelines to Proper Programming Etiquette

 3.1 Privacy

 Players of GenericMUCK are entitled to privacy. If you couldn't
 find something out by normal means or without the permission of the
 users involved, you should not find it out with a program.

***** Normal means does NOT include abuse of the powerful MPI command
language. That means one does not use MPI to violate the Privacy of others,
or attempt to manipulate or look at things or rooms you do not own. Please
see NEWS MPI for more information. ****

 However, when you use certain programs, it is understood that the
 program may store, relay, or use *reasonable* information for
 reasonable purposes. If you aren't sure a program would fit this
 guideline, please ask.

 (A) Bugs relay information to another person, room, or stores it for
 later reading, without your implicit consent.

 Examples of legal programs:

 1. Public programs such as page and spoof, which only use information
 for administrative purposes, and are documented as to this use.

 2. Programs that broadcast messages for the purposes of "virtual
 reality" such as a program to let you be heard from a stage. However
 it is possible to disguise the use of such programs. This is
 unethical.

 3. Bulletin boards, mailing systems, and other programs meant to
 record and display messages for the public. By entering messages
 into such a program, the user gives implicit consent that they be
 stored and displayed.

 Examples of illegal programs:

 1. Programs that duplicate "page", "whisper", "say", or "pose" in order
 to record or relay information without the player's knowledge.

 (B) Scanners find information about other players, their properties,
 or belongings, that would not normally be available, and which
 the player does not wish revealed. This includes programs written
 in MPI.

 Examples of legal programs:

 1. A program that only shows you messages or properties which are set
 specifically for that program. E.G. a smell program might show you
 people's smell messages, but it would be unethical to write programs
 to read people's smell messages at a distance, without their consent.

 2. Programs that show you information which you could obtain another way,
 e.g. a program to tell you which of a selected group of people are on
 the WHO list, or a program to tell you what exits go from rooms that
 you own. Owners can always examine anything they own.

 3. In reasonable circumstances, programs may show you information
 such as which players are in another room if it is known to the
 people in this room that they may be observed. E.G. a transparent
 exit description for windows.

 Examples of illegal programs (in MUF or MPI):

 1. Programs that show you properties or messages on players, objects,
 and so forth that you do not own and could not normally find out.

 2. Programs that reveal private exits in rooms without the permission
 of the room's owner. (similarly, programs to locate players without
 their permission)

 3.2 Respect

 Certain programs may, while not invading a player's privacy, harass
 that player, or make it possible to do so in a way that is undetectable.
 Players are entitled to respect and dignity.

 (a) Spoofers that allow a player to simulate another player's actions.
 This would allow players to forge incriminating or insulting
 messages under that player's name. Messages that could potentially
 be spoofed should be made apparent in some plain manner or changed
 to remove this danger.

 (b) Markers are programs that change, add to, or remove player
 properties without their implicit permission.

 Examples of legal programs:

 1. Programs may set temporary properties, or properties that obviously
 belong to the program, and do not interfere with other programs or
 the user's convenience. E.G. the page program sets a number of
 properties for records keeping.

 2. Programs that explicitly give the user full knowledge of what changes
 are about to be made. E.G. role-playing systems and shape-shifting
 programs that modify your description.

 3. Programs for building assistance, which change your properties and/or
 objects in an approved way.

 Examples of illegal programs (in MUF or MPI):

 1. Programs to overwrite another player's descriptions, messages, etc.
 without their consent.

 2. Programs meant to harass them by insulting, annoying, or otherwise
 inconveniencing them, e.g. programs to send a spoof message directly
 to a player without the player's permission, or to whisper to all but
 one player.

 3.3 Other Prohibited Programs (MUF or MPI)

 GenericMUCK prohibits general teleporter programs that would allow
 players to invade private rooms or that are intended to violate
 virtual reality, e.g. encouraging people to teleport directly to a
 room, ignoring intervening areas. We also dislike programs that add
 pennies for no valid reason. Pennies are spent and used for things,
 and available at the GenericMUCK bank.

 Teleporters may be allowed in limited cases, but only for very
 specific reasons and purposes. They must follow these restrictions:

 1. Players must agree explicitly, or implicitly by entering a vehicle,
 following another player, being picked up by that player, etc. to
 be moved.

 2. Programs to move players can only move players from or to rooms

 for which they have permission, and under such circumstances as are
 appropiate, e.g. a taxi might have stops in different rooms with the
 permissions of these rooms' owners.

 3. Such programs must be appropiate to the circumstances, the "virtual
 reality" of the situation in question, etc.

 3.4 What Happens If I Make A Mistake?

 There are three steps, depending on seriousness of the offense.
 Accidents and oversights happen; on the other hand, a deliberate
 infraction may well lose you your Mucker bit immediately. You will be
 informed of the reasons for any actions we take as regards you or your
 programs. If you misuse MPI, your BUILDER bit will be removed.

 1. If you write a program considered abusive or forbidden, you will be
 talked to about why you need such a program.

 (a) If the reasons are acceptable, the program may be allowed as is,
 or we may suggest how it can be modified to make it fit the
 guidelines.

 (b) If the reasons are unacceptable or inadequate, you may be warned
 to remove the program, or else modify it so that it will be
 acceptable.

 2. If you don't comply with requests to modify or remove a program that
 is particularly abusive, then the program may be removed. Programs
 that may crash the server may also be confiscated or removed. You
 will be told how and why the program crashes the server

 3. If you repeatedly upload programs that were removed as abusive, or
 crash the server, or otherwise abuse your Mucker bit, then you may
 be deMuckered and offending programs will be removed. Violations with
 MPI will result in the loss of your BUILDER bit as well.

 Appeals will be allowed under extenuating circumstances.

4.0 Program Libraries and Macros

 4.1 Documentation

 Please document your programs where possible, so that those who are
 meant to use them can do so. If programs are Link_OK, therefore publicly
 usable, you should put comments at the top. Public programs should also
 follow the convention of including a #help function.

 We suggest that programs have comment headers describing the basic code
 (two or three lines to synopsize the program's purpose, how it should be
 used, and unusual things that users should know), naming the owner, and
 providing any copyrights you wish to include.

 Please don't complicate your code more than MUF normally reads;
 deliberately obfuscating your code beyond a capable Mucker's ability to
 read is considered impolite. Macros should be commented, or else obvious
 from name or definition as to what they are intended to do.

 4.2 Information Ownership

 Many programs are set Link_OK so that they can be readily used. This
 does not mean that you are free to copy them to other systems, or for
 your own uses. Please ask the permission of the creator before you copy
 programs!

5.0 The Final Word

If you have any questions about this policy, MUCKing, or other related
issues, please ask a knowledgeable player, Mucker, or Administrator.
They may be able to offer you answers, suggest where you can look
quickly and conveniently for information, or suggest how Mucker policy
applies to your question.

In all disputes related to Mucker policy and programming on GenericMUCK,
the judgement of the MUF Administrators is final, and supercedes the
guidelines of this policy.

6.0 Mucker bit levels and getting your mucker bit.

There are 3 Mucker levels.

 M1 - Starter, or Apprentice
 M2 - Standard, or Journeyman
 M3 - Special, or Master

When you ask for a Mucker bit on GenericMUCK, you will be set M1. This
is where all Muckers will start. This gives you access to the @program and
@edit commands and allows 75% of MUF functions. This is a safety feature
to allow you to learn MUF without fear of damaging anything.

To get to Level M2, you should have written, tested, and debugged some
useful programs and then ask the MUF Administrator or hir assistants
to look at them for programming style and usefulness. The Administrators
may then grant you the M2 level. This allows 95% of MUF features to work.

Level M3 is needed only in very special programs that must directly
manipulate sensitive data from the database. This level can only be granted
by the MUF Administrators.

TO GET A Mucker BIT: Page or page #mail a wizard. Any wizard can give you
an M1 bit. M2 and M3 bits are set by the MUF Administrator.

	MUCK Manual Version
	Introduction
	1.0 Basic Commands and Setting up a Character
	1.1 Some Terms and Abbreviations
	Frequently used abbreviations:

	About this Manual
	1.2 Connecting to the MUCK
	1.3 Getting a Character
	1.4 Basic Commands
	1.4.1 Looking
	1.4.2 Moving
	1.4.3 Talking
	1.4.4 Seeing Who's Around
	1.4.5 Carrying Things

	1.5 Setting Up Your Character
	1.5.1 Describing Yourself
	1.5.2 Setting your Sex and Species
	1.5.3 Locking Yourself
	1.5.4 Getting a Home

	1.6 Getting Help

	2.0 Commands
	2.1 Overview: Dbrefs, Names, Flags, Properties and Lists
	Dbrefs and Names:

	Flags:
	Properties:
	Lists:
	2.1.1 Protected, Restricted, and Wizard Props
	2.1.2 Messages and Message Properties
	2.1.3 Data Types and Setting Properties
	2.1.4 Triggering From Properties
	2.1.5 Registered Names
	2.1.6 Pattern Matching and Output Types
	Output Types
	2.1.7 Pronoun and Name Substitution

	2.2 Overview: Rooms and the Environment Tree.
	Overview: Things
	2.2.1 Droptos
	2.2.2 Looktraps

	2.3 Overview: Exits and Locks
	Exits
	Locks:
	2.3.1 Bogus Exits
	2.3.2 Unsecured Exits
	2.3.3 Exit Priorities

	2.4 User-Created Commands
	2.5 Flag Reference
	A (Abode, Abate, Autostart)
	B (Builder, Bound, Block)
	C (Chown_OK, Color)
	D (Dark, Debug)
	E (Exit)
	F (MUCK Forth Program)
	H (Haven, HardUID)
	J (Jump_OK)
	K (Kill_OK)
	L (Link_OK)
	M1 (Mucker Level 1)
	M2 (Mucker Level 2)
	M3 (Mucker Level 3)
	P (Player)
	Q (Quell)
	R (Room)
	S (Silent, Sticky, SetUID)
	W (Wizard)
	X (Xforcicble)
	V (Vehicle)
	Z (Zombie)

	2.6 Server Command Reference
	@ACTION
	@ARMEGEDDON
	@ATTACH
	@BOOT
	@CHOWN
	@CHOWN_LOCK
	@CONLOCK
	@CONTENTS
	@CREATE
	@CREDITS
	@DESCRIBE
	@DIG
	DROP
	@DROP
	@DUMP
	@EDIT
	@ENTRANCES
	EXAMINE
	@FAIL
	@FIND
	@FORCE
	@FORCE_LOCK
	GET
	GOTO
	GIVE
	GRIPE
	HELP
	HOME
	@IDESCRIBE
	INFORMATION
	INVENTORY
	KILL
	@KILL
	LEAVE
	@LINK
	@LIST
	@LOCK
	LOOK
	MAN
	MOVE
	MPI
	@NAME
	@NEWPASSWORD
	NEWS
	@ODROP
	@OECHO
	@OFAIL
	@OPEN
	OUTPUTPREFIX
	OUTPUTSUFFIX
	@OSUCCESS
	@OWNED
	PAGE
	@PASSWORD
	@PCREATE
	@PECHO
	POSE
	@PROGRAM
	@PROPSET
	@PS
	PUT
	QUIT
	READ
	@RECYCLE
	@RESTRICT
	ROB
	SAY
	SCORE
	@SET
	@SHUTDOWN
	@STATS
	@SUCCESS
	@SWEEP
	TAKE
	@TELEPORT
	THROW
	@TOAD
	@TRACE
	@UNCOMPILE
	@UNLINK
	@UNLOCK
	@USAGE
	@WALL
	WHISPER
	WHO

	2.7 User-Created Command Reference
	3WHO
	@ARCHIVE
	@BANSITE
	BOOTALL
	CHANGE
	@CHECK
	@DOING
	EDIT
	FETCH
	LOOKAT
	LSEDIT
	LSPROP
	PROPCP
	PROPMV
	@PURGE
	PUT
	READ
	@REGISTER
	@RESTART
	@SIZE
	SWEEP
	UPTIME
	@VIEW
	@WHEN

	3.0 PROGRAMMING
	3.1 Overview: MPI
	3.1.1 MPI Macros
	3.1.2 MPI Examples

	3.1.3 MPI Reference
	Definitions
	ABS
	ADD
	AND
	ARG
	ATTR
	AWAKE
	CENTER
	COMMAS
	CMD
	CONCAT
	CONTAINS
	CONTENTS
	CONTROLS
	CONVSECS
	CONVTIME
	COUNT
	CREATED
	DATE
	DBEQ
	DEBUG
	DEBUGIF
	DEC
	DELAY
	DELPROP
	DICE
	DIST
	DIV
	EQ
	EVAL
	EXEC
	EXEC!
	EXITS
	FILTER
	FLAGS
	FOLD
	FOR
	FORCE
	FOREACH
	FOX
	FTIME
	FULLNAME
	GE
	GT
	HOLDS
	HOW
	IDLE
	IF
	INC
	INDEX
	INDEX!
	INSTR
	ISDBREF
	ISNUM
	KILL
	LASTUSED
	LCOMMON
	LE
	LEFT
	LEXEC
	LINKS
	LIST
	LISTPROPS
	LIT
	LMEMBER
	LOC
	LOCKED
	LRAND
	LUNION
	LUNIQUE
	LSORT
	LT
	LTIMESTR
	MAX
	MKLIST
	MIDSTR
	MIN
	MODIFIED
	MOD
	MONEY
	MUCKNAME
	MUF
	MULT
	NAME
	NE
	NEARBY
	NL
	NOT
	ONLINE
	ONTIME
	OR
	OTELL
	OWNER
	PARSE
	PRONOUNS
	PROP
	PROP!
	PROPDIR
	RAND
	REF
	RIGHT
	SECS
	SELECT
	SET
	SIGN
	SMATCH
	STIMESTR
	STORE
	STRIP
	SUBLIST
	SUBST
	SUBT
	TELL
	TESTLOCK
	TIME
	TIMESTR
	TIMESUB
	TOLOWER
	TOUPPER
	TYPE
	TZOFFSET
	USECOUNT
	V
	VERSION
	WHILE
	WITH
	XOR

	3.2 Overview: MUF
	Before You Begin:
	3.2.1 Mucker Levels
	MUF Libraries
	Creating Libraries
	3.2.3 MUF Macros
	3.2.4 MUF Compiler Directives

	3.2.5 MUF Reference
	3.2.4 MUF Library Reference
	Functions by Library:
	Lib-Case
	Lib-Edit
	Lib-Editor
	Lib-Index
	Lib-Match
	Lib-LMGR
	Lib-Look
	Lib-Mesg
	Lib-Mesgbox
	Lib-Props
	Lib-Reflist
	Lib-Strings
	Lib-Stackrng

	4.0 TUTORIALS
	4.1 Using the List Editor
	4.2 Making a Multi-Action
	4.3 Making Puppets
	4.4 Making Vehicles
	4.5 Creating Rooms and Areas
	Creating an Environment Room:
	Creating and Propping Exits:
	Describing Rooms:
	Writing Room Descriptions:

	4.6 Archiving Your Belongings

	5.0 ADMINISTERING A MUCK
	5.1 Technical Issues
	5.1.1 Selecting a Site
	5.1.2 Compiling a MUCK
	Getting the Server
	Uncompressing the Files
	Editing the Configuration Files
	Compiling the Source Code
	Specifying Database Files
	Starting and Logging onto the Server
	Quick and Dirty Trouble-Shooting
	5.1.3 Setting Up the Database
	5.1.4 Security Concerns

	5.2 Nontechnical Issues
	5.2.1 Conceptualizing the World
	5.2.2 Recruiting a Staff
	5.2.3 Sharing Responsibility
	5.2.4 Privacy Issues
	5.2.6 Toading
	5.2.7 Record Keeping
	5.2.8 The Last Word
	Clients
	Appendix B: Sample Policy Files

